The Art of Making a Scientific Presentation
TIPS FOR PRESENTING

ARRIVE 10 MINUTES EARLY

CHECK THE MICROPHONE PRIOR TO STARTING
Check the sound (listen)
Check for audience reception

CHECK THE AV EQUIPMENT PRIOR TO STARTING
TIPS FOR PRESENTING

NO UHS, PAUSE

LOOK AT YOUR AUDIENCE
DESCRIBE YOUR SLIDES - the title, the x and y axes

LOOK AT YOUR SLIDES, POINT TO YOUR DATA
AND WHAT YOU ARE REFERING TO -
DON’T MAKE THE LISTENER TRY TO FIGURE
OUT WHAT YOU ARE REFERING TO.

AVOID COMPLICATED SLIDES.
TIPS FOR PRESENTING

KEEP THE WORD SLIDES TO A MINIMUM OF WORDS.

A 60 MINUTE TALK SHOULD LAST FOR NO MORE THAN 50 MINUTES.

A 10 MINUTE TALK IS A 10 MINUTE TALK.

LEAVE TIME FOR QUESTIONS.

THANK YOUR AUDIENCE AND ASK FOR QUESTIONS.
Practice
Practice
Practice
Practice
TIPS FOR PRESENTING

The pros and cons of Powerpoint

Pros:
- Can make very colorful and fancy slides
- Can animate slides
- Can wait till the very last minute to make slides
- Can spell check.

Cons:
- Can make very colorful and fancy slides
- Can animate slides
- Can wait till the very last minute to make slides
Fill the slide with the figure/graph

Sit in the back of the auditorium and go through your slides.
Effects of EPCs on CLP-induced Plasma miR-126 Expression

* p<0.05 compared to sham group. # P<0.05 compared to CLP group. N=3-6 mice/group.
Effects of EPCs on CLP-induced Plasma miR-126 Expression

* p<0.05 compared to sham group. # P<0.05 compared to CLP group. N=3-6 mice/group.
TIPS FOR PRESENTING

CHOOSE YOUR FONT SIZE AND COLORS CAREFULLY

SIT IN THE BACK OF THE AUDITORIUM AND MAKE SURE THAT YOU CAN SEE THE WORDS
MAKING A SCIENTIFIC PRESENTATION TIMES -24
MAKING A SCIENTIFIC PRESENTATION HELVETICA-24
MAKING A SCIENTIFIC PRESENTATION HELVETICA
MAKING A SCIENTIFIC PRESENTATION TIMES BOLD-24
MAKING A SCIENTIFIC PRESENTATION-24

Making a scientific presentation -12
MAKING A SCIENTIFIC PRESENTATION TIMES

MAKING A SCIENTIFIC PRESENTATION TIMES

MAKING A SCIENTIFIC PRESENTATION HELVETICA

MAKING A SCIENTIFIC PRESENTATION HELVETICA BOLD

MAKING A SCIENTIFIC PRESENTATION TIMES BOLD

MAKING A SCIENTIFIC PRESENTATION HELVETICA BOLD
DO NOTS
You are not cowboys and cowgirls!
GPCR signaling pathway

Chemokines, Hormones, Transmitters (e.g., interleukins, serotonin, etc.)

GPCR

PLC

G-Protein

PKC

NF-κB

Adenylate cyclase

PKA
The PI3K/AKT pathway

<table>
<thead>
<tr>
<th>TP receptor</th>
<th>Stress fibers</th>
<th>% positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type</td>
<td>90%</td>
<td>(389)</td>
</tr>
<tr>
<td>pcDNA3</td>
<td>10%*</td>
<td>(132)</td>
</tr>
<tr>
<td>Wild-type+SQ29,548</td>
<td>39%*</td>
<td>(128)</td>
</tr>
<tr>
<td>L222N</td>
<td>15%*</td>
<td>(80)</td>
</tr>
<tr>
<td>L222A</td>
<td>33%*</td>
<td>(51)</td>
</tr>
<tr>
<td>L222I</td>
<td>97%</td>
<td>(34)</td>
</tr>
<tr>
<td>C223A</td>
<td>84%</td>
<td>(163)</td>
</tr>
<tr>
<td>H227A</td>
<td>95%</td>
<td>(41)</td>
</tr>
<tr>
<td>E240A</td>
<td>67%*</td>
<td>(70)</td>
</tr>
<tr>
<td>E242A</td>
<td>64%*</td>
<td>(119)</td>
</tr>
<tr>
<td>R235A</td>
<td>85%</td>
<td>(40)</td>
</tr>
<tr>
<td>R237A</td>
<td>92%</td>
<td>(39)</td>
</tr>
<tr>
<td>D238A</td>
<td>84%</td>
<td>(51)</td>
</tr>
<tr>
<td>A323-343</td>
<td>84%</td>
<td>(49)</td>
</tr>
</tbody>
</table>

Table 1. Stress fiber formation for wild-type and mutant TP receptors.
TIPS FOR PRESENTING

HOW MANY SLIDES SHOULD YOU HAVE FOR A TALK?

10 MINUTE TALK 10-12 DATA SLIDES

50 MINUTE TALK ~ 40 SLIDES
The KISS Principle

KEEP IT SIMPLE STUPID
TELL A STORY

TELL THEM WHAT YOU ARE GOING TO TELL THEM

INTRODUCTION AND BACKGROUND

TELL THEM DATA

JUST ONE STORY

Develop a thread throughout-bridge the slides/data.

TELL THEM WHAT YOU TOLD THEM

SUMMARY AND CONCLUSIONS
INTRODUCTION/BACKGROUND

KEEP IT SUCCINCT AND TO THE POINT

OBJECTIVE/HYPOTHESIS

FOCUS THE LISTENER

METHODS

EXPLAIN THE EXPERIMENTAL PARADIGM
PRESENTING YOUR DATA

DATA SLIDES SHOULD HAVE THE FOLLOWING;

A TITLE- Describes the slide
X & Y AXES CLEARLY LABELLED FOR GRAPHS
MEAN AND SEM OR STANDARD DEVIATION
N
P VALUES

DESCRIBE YOUR SLIDES

BRIDGE THE PRESENTATION OF YOUR SLIDES!!
DON’T JUST SHOW THE SLIDES
Rigor and reproducibility

Mind your p’s and n’s.
Affinity and density of wild type TP receptors in HEK 293 cells

<table>
<thead>
<tr>
<th></th>
<th>K_d (nM)</th>
<th>B_{max} (pmoles/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type (n=26)</td>
<td>3.3 ± 0.2</td>
<td>13 ± 2</td>
</tr>
</tbody>
</table>
Affinity and density of wild type and mutant TP receptors in HEK 293 cells

<table>
<thead>
<tr>
<th></th>
<th>K_d (nM)</th>
<th>B_{max} (pmoles/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type (n=26)</td>
<td>3.3 ± 0.2</td>
<td>13 ± 2</td>
</tr>
<tr>
<td>L222N (n=5)</td>
<td>1.1 ± 0.4*</td>
<td>0.5 ± 0.1*</td>
</tr>
<tr>
<td>L222A (n=7)</td>
<td>1.8 ± 0.2*</td>
<td>2.5 ± 0.6*</td>
</tr>
<tr>
<td>L222I (n=6)</td>
<td>1.7 ± 0.2*</td>
<td>4.2 ± 0.9*</td>
</tr>
</tbody>
</table>

* Compared to WT, $P<0.01$
+ Compared to WT, $P<0.05$
Affinity and density of wild type and mutant TP receptors in HEK 293 cells

<table>
<thead>
<tr>
<th></th>
<th>K_d (nM)</th>
<th>B_{max} (pmoles/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type (n=26)</td>
<td>3.3 ± 0.2</td>
<td>13 ± 2</td>
</tr>
<tr>
<td>L222N (n=5)</td>
<td>1.1 ± 0.4*</td>
<td>0.5 ± 0.1*</td>
</tr>
<tr>
<td>L222A (n=7)</td>
<td>1.8 ± 0.2*</td>
<td>2.5 ± 0.6*</td>
</tr>
<tr>
<td>L222I (n=6)</td>
<td>1.7 ± 0.2*</td>
<td>4.2 ± 0.9*</td>
</tr>
<tr>
<td>C223A (n=3)</td>
<td>2.4 ± 0.1*</td>
<td>4.7 ± 2.3*</td>
</tr>
<tr>
<td>C223S (n=6)</td>
<td>2.0 ± 0.2*</td>
<td>2.8 ± 0.4*</td>
</tr>
</tbody>
</table>

* Compared to WT, $P<0.01$

+ Compared to WT, $P<0.05$
ECAR FOR ALPHA ISOFORM OF TXA$_2$ RECEPTOR

Increase in ECAR (% over Basal)

I-BOP [nM]

N=4
P=0.003

- red = minus Gα_{13}
- yellow = plus Gα_{13}
QUOTING OTHER SCIENTISTS’ PUBLICATIONS

GIVE THE FULL REFERENCE AT THE BOTTOM OF THE SLIDE
Renal Effects of Rofecoxib: 72 Hour Sodium Excretion

Comparison of various drugs to inhibit COX-1 and COX-2

- 6-MNA
- Acetaminophen
- Naproxen
- Ibuprofen
- Meloxicam
- Nimesulide
- Celecoxib
- Rofecoxib
- Indomethacin
- Diclofenac

Cyclooxygenase-2 IC$_{50}$ (µM) vs. Cyclooxygenase-1 IC$_{50}$ (µM)
SUMMARY

LIST THE MOST IMPORTANT OBSERVATIONS

CONCLUSION

SPECULATION, SIGNIFICANCE OF THE OBSERVATIONS AND/OR FUTURE DIRECTIONS

ACKNOWLEDGEMENTS
DON’T FORGET TO THANK THE AUDIENCE
ASK IF THERE ARE ANY QUESTIONS