BIOINFORMATICS 101: GENOME ANALYSIS TOOLKIT (GATK) 4

W. Bailey Glen Jr.

02/26/2017

Broad Institute

- Independent research center partnered with Havard and MIT
- Cambridge, MA
- Broad Genomics
 - Large Scale Sequencing Core
 - One 30X human whole genome every 12 minutes
 - Computation Model and Software Development

Software Tools

- GATK
- Integrated Genome Viewer
- Hail
- Tumor Portal

GATK

- Analyzing sequencing analysis for genetic variation
 - Primarily Focused on Small Variants
 - Copy number changes recently added
 - Primarily Focused on DNA
 - RNA best practices have been previously defined
 - Primarily Constitutional
 - Tumor/Normal developed
 - Tumor only workflow now described
- Not
 - RNA expression analysis
 - Linkage disequilibrium or association testing

GATK 4 – Refactoring and more

- In development for years
- Refactored GATK 3
 - In many cases, same commands producing equivalent results
- Partnered with Intel
- Large focus on computer science and software implementation
 - Performance
 - Deployment
 - Scalability
- Opensource

Component Software

- GATK
 - Java
- Dependencies
 - JVM
 - BWA
 - Picard tools
- Available as Docker or JAR

Docker

- Container Virtualization
 - Runs on linux, mac, windows
 - Creates an isolated controlled virtual computer on your computer
 - Comes with packages installed and version controlled
 - Dockers are "easily" deployed
- Emerging standard for sharing bioinformatic tools
- One new tool to learn, improve using many tools

```
glen@baileylaptop: ~
File Edit View Search Terminal Help
  docker pull broadinstitute/gatk
Using default tag: latest
latest: Pulling from broadinstitute/gatk
ae79f2514705: Already exists
5ad56d5fc149: Pulling fs layer
170e558760e8: Pulling fs layer
395460e233f5: Pulling fs layer
6f01dc62e444: Pull complete
dc9c3ece7593: Pull complete
16a3034a6570: Pull complete
ea15f6798d84: Pull complete
4b3ec876807a: Pull complete
504f977e3da2: Pull complete
66e54a65e68a: Pull complete
d86f1090b756: Pull complete
c00e61b86e6f: Pull complete
7f8b346587f9: Pull complete
6e0733af7bfd: Pull complete
68838f79c600: Pull complete
80141b4e7ac0: Pull complete
ee99ef7e94e5: Pull complete
435deb47ccc5: Pull complete
ad9a399ca2a9: Pull complete
Digest: sha256:14b4dd387cf6900939e033b91b5f7db2a1cc6a694a222469aef80a0e2b18d0fc
Status: Downloaded newer image for broadinstitute/gatk:latest
```

Library Prep Primary **And Sequencing FASTQ** Alignment Secondary **Variant Calling**

Wet bench, image processing and base calling

Alignment to reference genome

Detection of genetic variation (SNPs, Indels, SVs)

Annotation

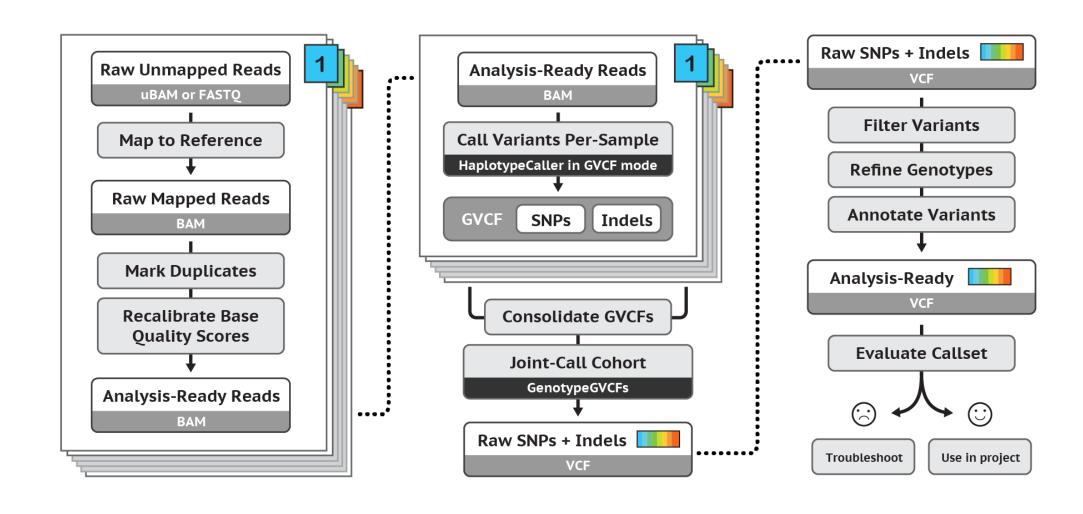
Linking variants to biological information

VCF

BAM

VCF

Filter (Query) Select


Filter to relevant variants and select individual variants

Tertiary

GATK Best Practices

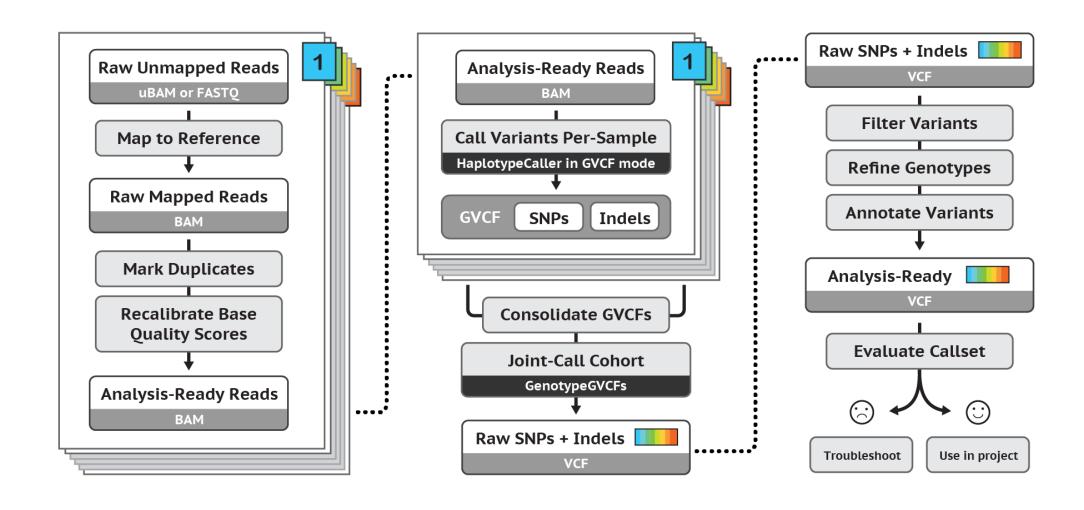
- https://software.broadinstitute.org/gatk/best-practices/
- Small Nucleotide Polymorphisms
 - Germline SNPs + Indels
 - Somatic SNVs + Indels
 - RNAseq SNPs + Indels
- Copy Number Variations
 - Germline CNVs
 - Somatic CNVs

Example Genome Analysis Toolkit Workflow

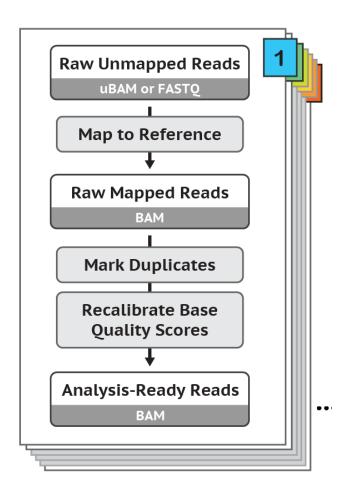
Major File Types

- Unaligned Reads
 - FASTQ or uBAM

- Aligned Reads
 - BAM

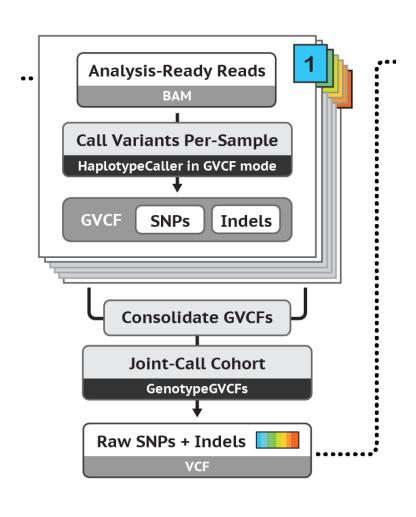

- Variant Call Files
 - GVCF (intermediate)
 - VCF

Alignment Software


- Aligns reads to Reference Genome
 - Database Search Alignment
 - BLAST
 - Short Read Sequence Alignment
 - BWA-MEM
 - BOWTIE

- Reads can also be aligned to themselves if a reference alignment is missing (de novo assembly)
 - Long reads

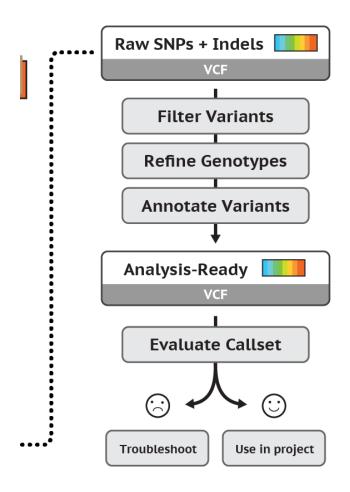
Constitutional DNA Best Practices


Preprocessing (Alignment)

Starting with unaligned reads

- Align to Reference Gene
 - BWA-MEM for DNA
 - STAR/BOWTIE for RNA
- Remove Duplicate Reads
 - Unless using an amplicon, most duplicate reads are sequencing errors
- Recalibrate Base Quality Scores
 - Statistical approach to improve base calls after completing a run

Alignment


Starting with preprocessed bams

- Generate gVCF for each sample
- Join call gVCFs

OR

Joint call bams to make VCF

Variant Calling

Starting with VCF

- Filter by Quality
- Refine Variants
 - Phasing (Trio, local within sample)
- Annotate Variants
 - Provide genomic context
- Perform Tertiary