
CBI's Image of the Month

July, 2021

Courtesy of Emilie McKinnon, MD/PhD student, Dr. Jensen's lab, Dept. of Neuroscience

Neglecting differences in compartmental transverse relaxation times (T2) when modeling diffusion MRI data affects the accuracy of microstructural parameters like the axonal water fraction (AWF). The bias in AWF can be corrected by simply acquiring an additional high b-value data set at a different echo time (TE) than used for the original calculation of the AWF. **A.** Parametric maps showing apparent AWF* (left) calculated from dMRI data acquired at TE = 140 ms, and the corrected true AWF (right) for a single axial slice. On average AWF values are 18% lower after correcting for the difference in compartmental relaxation times. Note that the AWF values and the correction scheme are only meaningful in white matter. **B.** Bar graphs showing the average apparent AWF^{*} (blue) and the corrected true AWF (red) for selected white matter regions of interest. The error bars indicate standard deviations. PLIC = posterior limb of internal capsule; GCC = genu of corpus callosum; SCC = splenium of corpus callosum; CR = corona radiata. More info: McKinnon, Emilie T., and Jens H. Jensen. "Measuring intra-axonal T2 in white matter with direction-averaged diffusion MRI." Magnetic resonance in medicine 81.5 (2019): 2985-2994.