

Volume 1, Issue 2
September 1, 2020

Altered co-localization of B-Arr2 and eNOS in injured sinusoidal endothelial cells. From Liu et al, (2020) PNAS 117:21:11483-92

On the Inside

DDRCC New Full Members

Profiles of two of our Cores:
Clinical Component Proteomics

Enrichment Series News from the DDRCC

Welcome New DDRCC Members

As we begin this funding cycle in 2020, the Digestive Disease Research Core Center welcomes our newest Full Members. They represent eight clinical and basic science departments across campus, and bring with them a diverse wealth of research interests and expertise. More detailed descriptions of their research interests, along with a complete listing of the current DDRCC Full Membership may be found on the Member Directory page of the DDRCC Website.

Peggi Angel, PhD

Assistant Professor, Cell and Molecular Pharmacology and
Experimental Therapeutics. Modifications of extracellular matrix in liver inflammation, fibrosis, cirrhosis and hepatocellular carcinoma.

Hermes Florez, MD-PhD, MPH

Professor and Chair, Public Health Sciences. Gene-environment interactions, prevention and management of chronic diseases and aging, diabetes, liver and cardiovascular disease, veteran's health.

Marvella E. Ford, PhD, MS, MSW

Professor and SmartState Endowed Chair in Prostate Cancer Disparities, SC State University. Identification and intervention of factors driving disparities in cancer diagnosis and treatment.

Lewis J. Frey, PhD

Associate Professor, Public Health Sciences. Artificial Intelligence (AI) approaches for predictive modeling of cirrhosis, hepatocellular carcinoma and nonalcoholic fatty liver disease progression.

Wenjian Gan, PhD

Assistant Professor, Biochemistry and Molecular Biology. Kinase signaling pathways regulating liver development, fatty liver disease and cancer progression.

Denis C. Guttridge, PhD

Professor and Director, Darby Children's Research Institute, Department of Pediatrics. NF-kB signaling modulation in pancreatic cancer and cancer cachexia.

Yan Huang, MD-PhD

Professor, Department of Medicine. Sphingolipid and inflammatory signaling in diabetes, nonalcoholic fatty liver disease and periodontitis.

Jorge O. Munera, PhD

Assistant Professor, Regenerative Medicine and Cell Biology. iPSCderived human colonic organoids for modeling GI disease.

Anna-Lisa Nieminen, PhD

Associate Professor, Drug Discovery and Biomedical Sciences.

Mitochondrial iron homeostasis and pathophysiology in liver injury

Paul J. Nietert, PhD

Professor, Public Health Sciences. Director, Clinical Component Core. Methodological research in hierarchical data analysis, truncated distributions, and randomization in clinical trials.

Andrew D. Schreiner, MD, MSCR

Associate Professor, Department of Medicine. Developing Electronic Health Record (EHR)-based models for improving the diagnosis and management of chronic liver disease in primary care settings.

Özlem Yilmaz, DDS, PhD

Professor, Oral Health Sciences. Microbial pro-inflammatory nucleotide signaling in chronic periodontitis and its linkage to oral cancer.

Je-Hyun Yoon, PhD

Assistant Professor, Biochemistry and Molecular Biology. Non-coding RNA regulation and signaling linking alcohol-induced gut and chronic liver injury.

Zhi Zhong, MD-PhD

Professor, Drug Discovery \& Biomedical Sciences. Mitochondrial dysfunction in the genesis of alcoholic and nonalcoholic liver disease and steatohepatitis.

DDRCC Core Profile: PROTEOMICS

Rick Drake
Core Director

Lauren Ball
Assistant Director

Leadership

The MUSC Proteomics Center focuses on clinical and translational proteomics and the development of centralized diagnostics. Two DDRCC-sponsored cores include the established Mass Spectrometry Facility for proteomic services, and a new core established for biomolecular mass spectrometry imaging, the Mass Spectrometry Imaging Research Center. Mass spectrometry (MS) is the key analytical method for proteomics research, and the Center has a comprehensive, complementary suite of instrumentation for proteomic analyses.

In the clinical setting, MS-driven qualitative and quantitative proteomics can be used to profile disease and/or patient-specific proteins, protein modifications, and small molecules and monitor biomarker changes in response to therapy or disease progression. Extension of MS
profiling to two- or three-dimensions using tissue scanning technologies on histology specimens enables biomarker-driven disease profiling and staging in greater depth. As well, the ability to monitor molecular changes at the cell and tissue level facilitates the more insightful development of hypotheses regarding disease mechanisms.

Quantitative proteomics can provide unbiased insights into pathophysiological mechanisms and the response to therapeutics. Available approaches include, but are not limited to, mapping of drug-, RNA-, or protein-protein interactions, and global or targeted measurements of changes in protein abundance, cellular phosphorylation, glycosylation and other posttranslational modifications in response to genetic or signal perturbations.

Mass spectrometry tissue imaging approaches are performed on tissue sections to localize lipids, glycans, and collagens to the tissue pathology. The MUSC Proteomics Center offers unique capabilities for multiplexed 'Omics, whereby multiple classes of analytes can be profiled within the same specimen. Imaging mass spectrometry approaches can also be applied to cultured cells for profiling of certain metabolites, lipids and N -glycans.

The Center leverages high-performance computing resources with modern protein search algorithms, mass spectrometry-based quantitative analysis, statistical analysis (frequentist or Bayesian techniques), data-driven systems biology, -omic integration techniques, and classifier development (machine learning based) to generate actionable and hypothesis driven results for investigators.

Current instrumentation in the two core laboratories, the Mass Spectrometry Facility and Mass Spectrometry Imaging Research Center includes:

1. Two orbitrap mass spectrometers

(ThermoScientific Orbitrap Fusion Lumos with ETD/UVPD and Orbitrap Elite with ETD) for LCMS/MS analysis of post-translational modifications including phosphorylation, glycosylation, and redox-sensitive protein modifications.
2. Bruker instruments including a dual-source Tims-TOF FleX, a dual source Solarix 7T FT-ICR MS, a RapiFleX MALDI TissueTyper TOF, and an Autoflex MALDI-TOF MS for MALDI tissue imaging MS capabilities.

To initiate a project with the Proteomics Core:

For LC-MS/MS-based protomics, please email Lauren Ball for initial consultation. Further details about instrumentation, services and fees, facility descriptions to support grant writing and publication efforts, and details for acknowledging the core can be found on the Mass Spectrophotometry Facility webpage.

For MS-Imaging please email Peggi Angel for initial consultation. A separate webpage for the Mass Spectrometry Imaging Research Center services and fees is currently under construction.

Full members receive priority access and discounted services.

Core Profile: CLINICAL COMPONENT

Leadership

Paul Nietert Director DDRCC

Mat Gregoski Biostatistician DDRCC

Ramesh Ramakrishnan
Director, CDLD

Abby Kelly Biostatistician CDLD

Biostatistics Collaborations

Successful research careers in clinical sciences invariably involve collaborations or consultations with biostatisticians. Our CDLD and DDRCC members will have access to highquality, state-of-the-art service provided by two teams of biostatisticians, led respectively by Drs. Paul Nietert and V. Ramakrishnan (a.k.a. "Ramesh"), who will be assisted by Mat Gregoski, PhD, and Abby Kelley, MS.

Starting from simple data analysis for an abstract or sample size recommendations for your NIH grant, to complex designs of experiments or analyses of longitudinal clustered data or high-throughput data, Drs. Nietert, Ramesh and their teams enthusiastically await your request for support. They share your goal of promoting research studies that seek to improve clinical outcomes for patients with digestive diseases.

The biostatistics team recommends consultation for all your research projects. Feel free to approach the team as early as when you are formulating the specific aims. Ultimately, the yardstick they'll use for measuring their success is the number of funded grants (from sources such as the NIH and VA) and quality publications from DDRCC and CDLD members that come about through collaborations with the biostatistics team.

The procedure for seeking help from them is just a few clicks away and is free for CDLD and DDRCC members. Soon after an inkling of an idea for research emerges, put in a SCTR SPARC request (please see below for 'how-to'), with Mat Gregoski as the point person. One of the team members (Abby, Paul , Ramesh Ramakrishnan, or Mat), will soon contact you and begin the collaborations with you.

To initiate a collaboration with the Biostatistics Core:

Go to sparc.musc.edu

Click on green SCTR button on left (middle of page).
Select: "Biostatistics, Design, \& Epidemiology"
Put in any relevant study information, and make sure it gets "submitted"

Enrichment Series: Upcoming Dates to Remember

DDRCC / CDLD / GI and Hepatology Grand Rounds:

Wednesday, 7am EST

September 9: Joseph Elmunzer

GI Manifestations of COVID-19: A Multi-center Study

September 16: Don Rockey

The Molecular Basis of Portal Hypertension

September 23: David Whitcomb - University of Pittsburgh

Genetics in Pancreatitis

September 30: Peter Cotton
How Flexible Endoscopy Began
DDRCC / CDLD / RMCB Virtual Seminar Series:
Wednesday, 11am EST
September 2: Alejandro Adam - Albany Medical Center
IL-6-induced Vascular Leakage and Multi-organ Dysfunction
September 9: James Heslop (Duncan Lab)
GATA6 Controls Endoderm Fate by Controlling Chromatin Assembly
September 16: Hans Clevers - University Medical Center, Utrecht Organoids to Model Human Disease

September 23: Stephan Huveneers - University of Amsterdam
Endothelial adhesions sense forces for angiogenesis

Notes from the DDRCC

Meeting Presentations

The 14th International Symposium on ALPD and Cirrhosis
Aug 13-14, 2020 in Seoul, Korea

CYP2E1 Regulation of Ethanol-Induced Intestinal miRNAs in Liver Injury
Je-Hyun Yoon (Medical Univ. of South Carolina, USA)

American Association for the Study of Liver Diseases SIG Virtual Seminar Aug 11, 2020

Mitochondria, Oxidative Stress and Drug-Induced Liver Injury
John Lemasters (Medical Univ. of South Carolina, USA)

Awards
Read more about Dr.
Department of Medicine Developing Scholar Award Melssner's
Eric G. Meissner, MD-PhD
research

Selected Publications by our membership (April - June, 2020)

Schreiner AD, Rockex DC, Moran WP. The cost of hepatitis C testing strategies in primary care patients with abnormal transaminases. J Gen Intern Med. 2020 Apr;35(4):1340-1342. PubMed PMID: 31396811; PubMed Central PMCID: PMC7174443.

Nair-Menon J, Daulagala AC, Connor DM, Rutledge L, Penix T, Bridges MC, Wellslager B, Spyropoulos DD, Timmers CD, Broome AM, Kourtidis A. Predominant distribution of the RNAi machinery at apical adherens junctions in colonic epithelia is disrupted in cancer. Int J Mol Sci. 2020 Apr 7;21(7). PubMed PMID: 32272708; PubMed Central PMCID: PMC7177752.

Engexik MA, Danhof HA, Chang-Graham AL, Spinler JK, Engexik KA, Herrmann B, Endres BT, Garey KW, Hyser JM, Britton RA, Versalovic J. Human intestinal enteroids as a model of Clostridioides difficile-induced enteritis. Am J Physiol Gastrointest Liver Physiol. 2020 May 1;318(5):G870-G888. PubMed PMID: 32223302; PubMed Central PMCID: PMC7272722.

Liu S, Luttrell LM, Premont RT, Rackex DC. β-Arrestin2 is a critical component of the GPCR-eNOS signalosome. Proc Natl Acad Sci U S A. 2020 May 26;117(21):11483-11492. PubMed PMID: 32404425; PubMed Central PMCID: PMC7261012.

Engexik AC, Coutts AW, Kail I, Rodriguez P, Ongaratto F, Saqui-Salces M, Medida RL, Meyer AR, Kaloboxa E, Engevik MA, Williams JA, Shub MD, Carlson DF, Melkamu T, Goldenring JR. Editing myosin VB gene to create porcine model of microvillus inclusion disease, with microvillus-lined inclusions and alterations in sodium transporters. Gastroenterology. 2020 Jun;158(8):2236-2249. PubMed PMID: 32112796; PubMed Central PMCID: PMC7282982.

Wimborne HJ, Hu J, Takemoto K, Nguyen NT, Jaeschke, H, Lemasters. JJ, Zhong Z. Aldehyde dehydrogenase-2 activation decreases acetaminophen hepatotoxicity by prevention of mitochondrial depolarization. Toxicol Appl Pharmacol, 2020 Jun 1;396:114982. PubMed PMID: 32240663.

CITE OUR GRANTS

FOR THE DDRCC: P30 DK123704

FOR THE COBRE CDLD:

P20GM120457

```
This project was supported in part by
NIH P30 DK123704 (core facility) at the
MUSC Digestive Disease Research
Core Center
    For queries regarding DDRCC news,
    membership and cores, please contact the
    Center Manager:
    Kyu-Ho Lee, MD-PhD
    Gastroenterology and Hepatology
    Department of Medicine
    CSB HE903B
    96 Jonathan Lucas St
    Charleston, SC }2942
(843) 792-1689
leekh@musc.edu
```

This project was supported in part by NIH P20 GM120457 (core facility) at the MUSC COBRE in Digestive and Liver disease.

```
For queries regarding the COBRE in Digestive and Liver Disease, please contact the COBRE PI:
Stephen Duncan, DPhil
Department Chair
Regenerative Medicine and Cell Biology
BSB 657A MSC508
173 Ashley Ave
Charleston, SC 29425
(843) 792-9104
duncanst@musc.edu
```


Visit the DDRCC Website:

https://medicine.musc.edu/departments/dom/divisions/gastroenterology/research/labs-
and-centers/ddrcc

Visit the CDLD Website:

https://medicine.musc.edu/departments/regenerative-
medicine/cobre-digestive-liver-disease

© Medical University of South Carolina
173 Ashley Avenue

