# RESTRATA

Synthetic Hybrid-Scale Fiber Matrix

## Restrata is engineered to be structurally similar to native human extracellular matrix<sup>5</sup>







Human Tissue



Xenogenic Collagen

#### Restrata hybrid-scale fiber matrix features:

- Fiber size and structure supports cellular ingrowth and retention<sup>1,2</sup>
- Porosity supports granulation and vascularization<sup>2</sup>
- Controlled resorption rate via hydrolysis<sup>2</sup>
- Resistant to enzymatic degradation<sup>2</sup>
- Excellent biocompatibility<sup>1, 2</sup>
- Tensile strength similar to human skin<sup>1</sup>
- Slightly acidic byproducts, potentially lowering pH of local microenvironment<sup>4</sup>

**85**% of wounds treated with Restrata achieved **complete closure** at 12 weeks, with an average time to complete wound healing of 4.8 +/- 3.0 weeks<sup>3</sup>

| Closure in multiple<br>wound types <sup>3</sup>                  | All wounds<br>(n=82) | DFUs<br>(n=34) | VLUs<br>(n=34) | Other<br>wounds<br>(n=14) |
|------------------------------------------------------------------|----------------------|----------------|----------------|---------------------------|
| Complete wound<br>closure at 6 weeks<br>Number of wounds, n (%)  | 53<br>(64.6%)        | 21<br>(61.8%)  | 23<br>(67.6%)  | 9 (64.3%)                 |
| Complete wound<br>closure at 12 weeks<br>Number of wounds, n (%) | 68<br>(85.0%)        | 28<br>(84.8%)  | 30<br>(90.9%)  | 10<br>(71.4%)             |
| Mean ± SD                                                        | 4.8 ± 3.0            | 4.7 ± 2.7      | 5.3 ± 3.4      | 3.7 ± 2.7                 |



FDA clearance: April 2017



### Restrata is indicated for a variety of conditions including:<sup>5</sup>

- Surgical and trauma wounds
- · Partial and full-thickness wounds
- Acute and chronic wounds
- Tunneling and exudating wounds
- VLUs, DFUs and pressure ulcers
- Burns

Restrata demonstrated increased granulation, neovascularization and epithelialization versus Integra Bilayer Wound Matrix in a large animal model<sup>2</sup>



100% of wounds treated with Restrata were granulated after 15 days, compared to 20-50% of wounds treated with Integra Bilayer Wound Matrix<sup>2</sup>

### RESTRATA® Synthetic Hybrid-Scale Fiber Matrix

### **Size up to 10 x 12.5 cm**



| Part Number | Size (cm)   | Size (in) |  |
|-------------|-------------|-----------|--|
| RWM1-1X1    | 2.5 x 2.5   | 1 x 1     |  |
| RWM1-1X2*   | 2.5 x 5.0   | 1 x 2     |  |
| RWM1-1X3    | 2.5 x 7.5   | 1 x 3     |  |
| RWM1-2X2    | 5.0 x 5.0   | 2 x 2     |  |
| RWM1-3X3    | 7.5 × 7.5   | 3 x 3     |  |
| RWM1-4X5*   | 10.0 x 12.5 | 4 x 5     |  |

\*Available as open market purchase items in VA facilities.

#### **How to Order**

Call/fax Acera Customer Service (844) 879-2237

Or visit acera-surgical.com

FSS #V797P-36F79718D0525



Acera Surgical, Inc. ("Acera," St. Louis, MO) is a bioscience company commercializing a portfolio of synthetic hybrid-scale fiber matrices for medical applications.



#### Serving our veterans



#### Restrata is easy to use

- Terminally sterilized
- Two-year shelf life
- No human or animal tissue components—no special storage and handling requirements
- Six available sizes to reduce waste and cost
- ✓ No requirement for specific orientation when implanting
- Suitable for use in patients with specific ethnic or religious objections to tissue grafts
- Store at ambient temperature for off-the-shelf use

### Restrata is easy to apply

- **Select** appropriate size
- 2. Fenestrate if desired
- 3. Cut to fit
- 4. Hydrate as needed
- 5. Fixate with Steri-Strips, staples, or sutures

#### References

- 1. MacEwan MR, MacEwan S, Kovacs TR, et al. (October 2, 2017) What Makes the Optimal Wound Healing Material? A Review of Current Science and Introduction of a Synthetic Nanofabricated Wound Care Scaffold. Cureus Journal of Medical Science 9(10): e1736. doi:10.7759/cureus.1736
- 2. MacEwan MR, MacEwan S, Wright AP, et al. (August 27, 2017) Comparison of a Fully Synthetic Electrospun Matrix to a Bi-Layered Xenograft in Healing Full Thickness Cutaneous Wounds in a Porcine Model. Cureus Journal of Medical Science 9(8): e1614. doi:10.7759/cureus.1614
- 3. Regulski M, MacEwan M; Implantable Nanomedical Scaffold Facilitates Healing of Chronic Lower Extremity Wounds, Wounds, August 2018: Vol 30, No.8
- 4. Data on file
- 5. MKG-20002 IFU