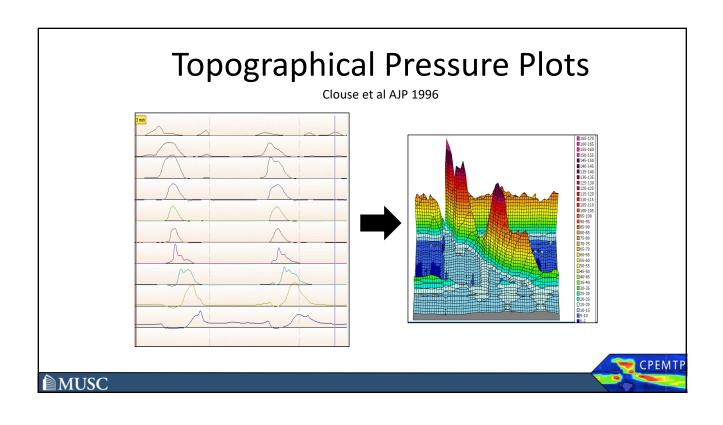
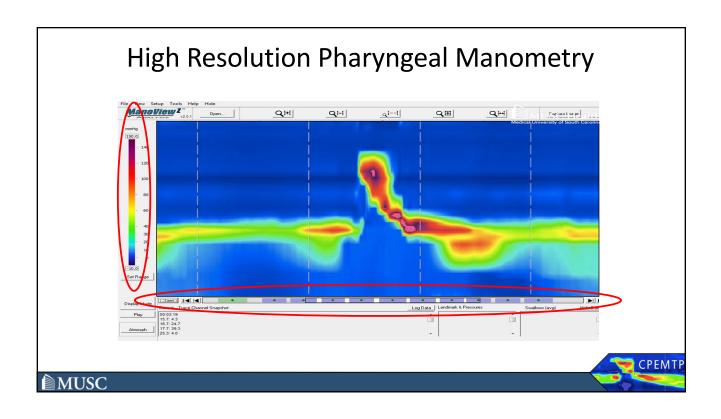
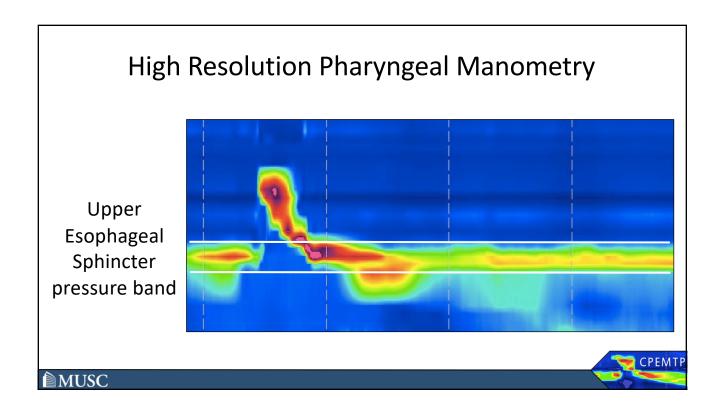


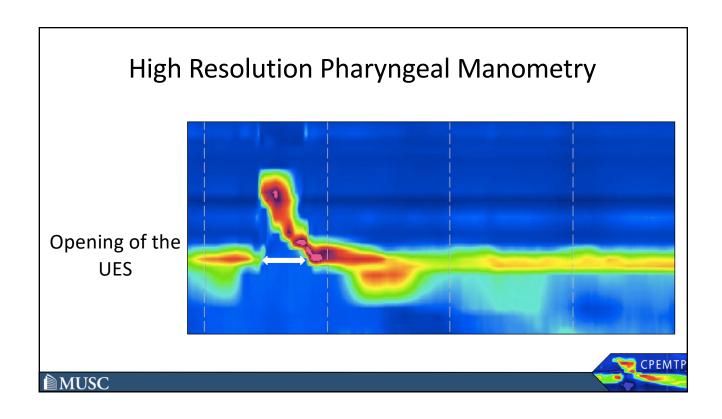
Normal Manometric Pharyngeal Swallowing

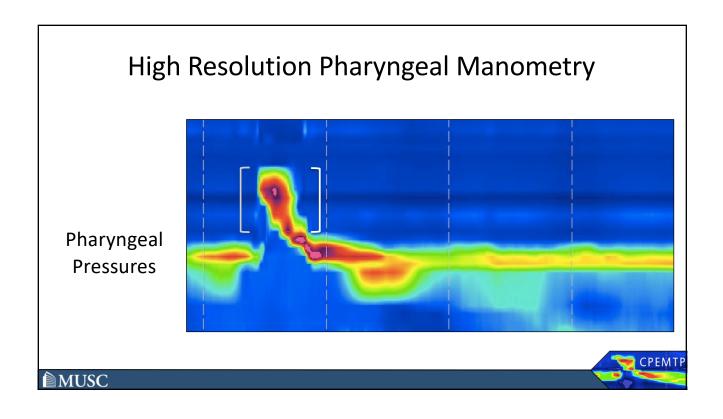
Kate W. Davidson, MS, CCC-SLP

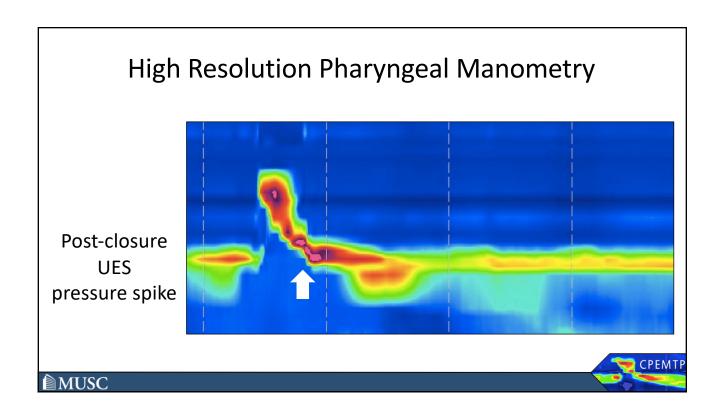

Research Associate, Department of Otolaryngology – Head & Neck Surgery Speech-Language Pathologist, Evelyn Trammell Institute for Voice & Swallowing Affiliate Clinical Faculty, College of Health Professions

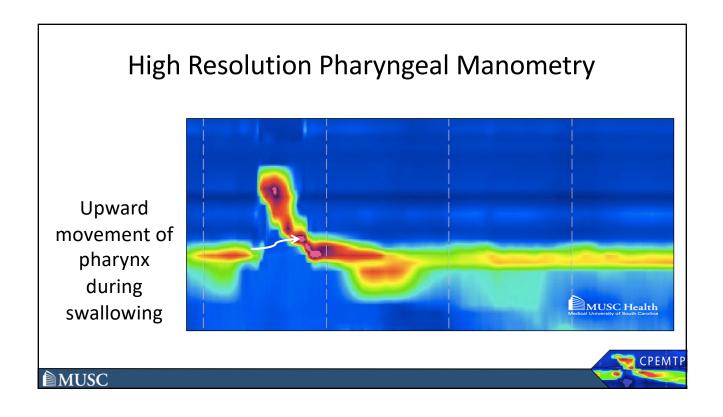

Endoscopic View of the Procedure

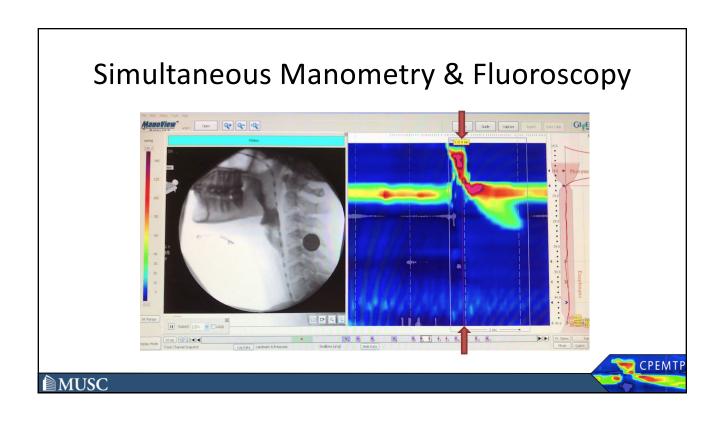


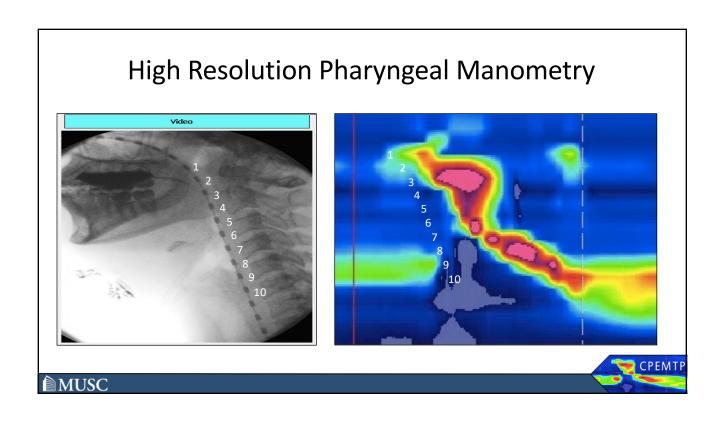


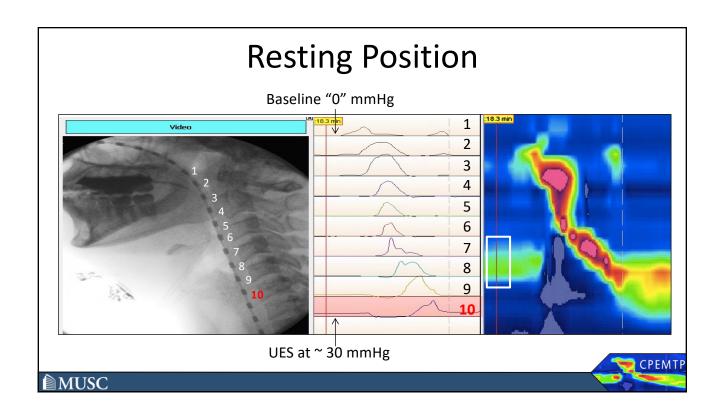


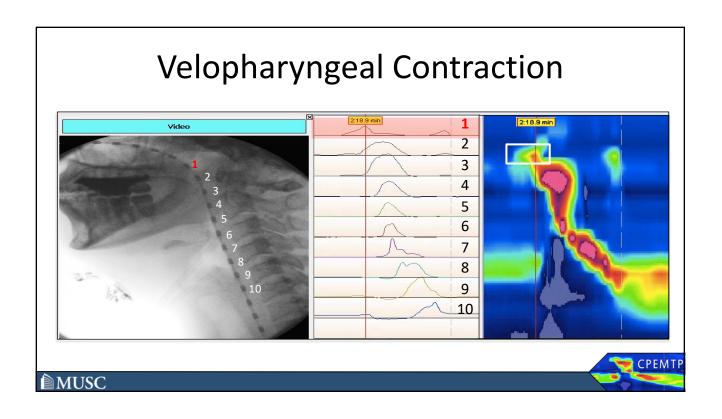


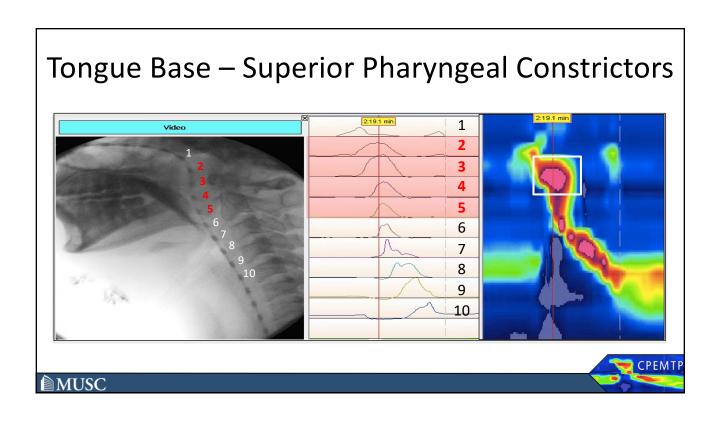


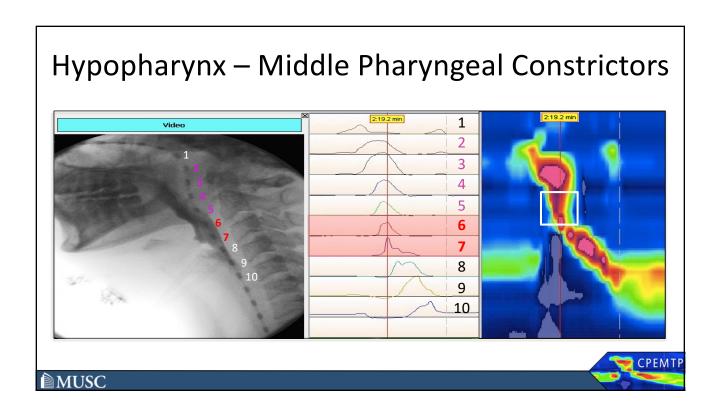


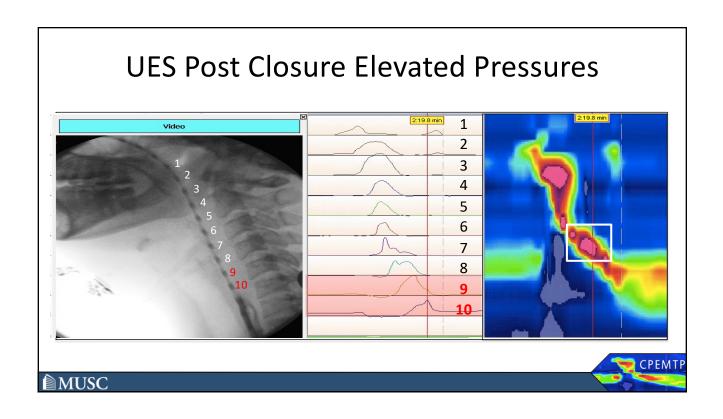


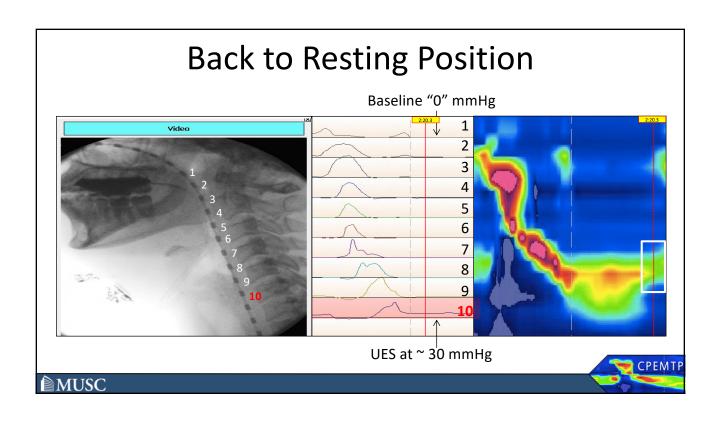


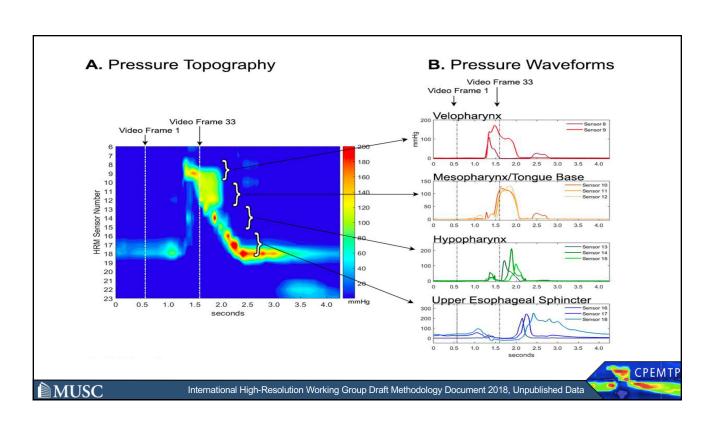












International HRPM Working Group

VISION

"To improve the quality of dysphagia care through the clinical implementation of high-resolution pharyngeal manometry."

MISSION

"To create a standardization of high-resolution pharyngeal manometry acquisition, measurement, reporting, education and training as well as advocate with payers and healthcare systems."

MUSC

Omari et al...O'Rourke AK. Dysphagia 2019

International HRPM Working Group

Methodology Sub-Group

 Goal: Develop a consensus on the standard methodology for HRPM including equipment, acquisition protocol, instrumentation and measurements.

Training & Education Sub-Group

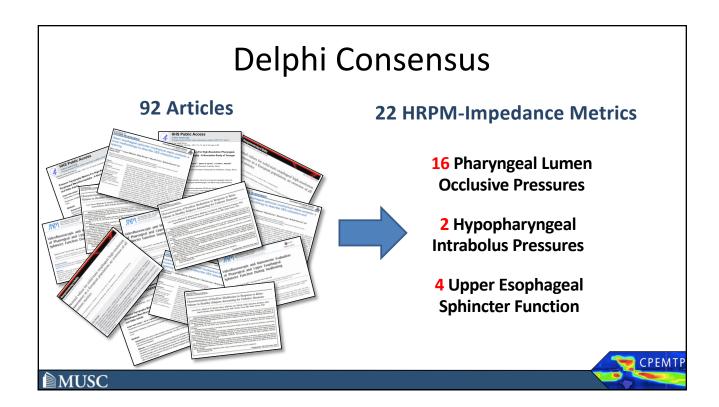
 Goal: Establish education and training protocols.

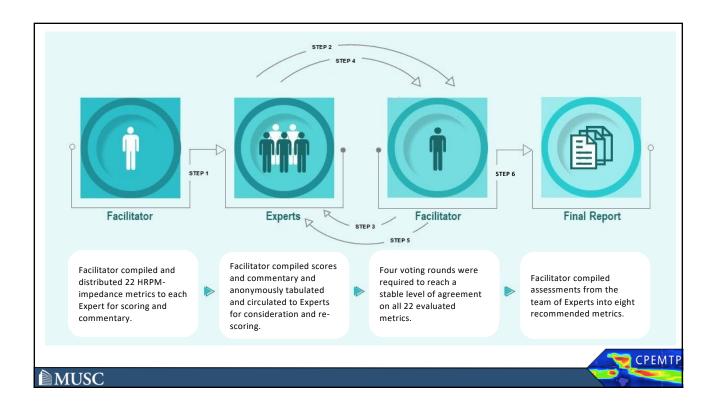
Partnership/Knowledge Dissemination Sub-Group

 Goal: Align the HRPM Working Group with a larger entity to gain support and aid in information dissemination.

ORIGINAL ARTICLE

High-Resolution Pharyngeal Manometry and Impedance: Protocols and Metrics—Recommendations of a High-Resolution Pharyngeal Manometry International Working Group


Taher I. Omari¹ · Michelle Ciucci² · Kristin Gozdzikowska³ · Ester Hernández³ · Katherine Hutcheson⁴ · Corinne Jones² · Julia Maclean⁵ · Nogah Nativ-Zeltzer⁶ · Emily Plowman⁷ · Nicole Rogus-Pulia² · Nathalie Rommel⁸ · Ashli O'Rourke⁹


Received: 24 July 2018 / Revised: 28 March 2019 / Accepted: 25 May 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

High-resolution manometry has traditionally been utilized in gastroenterology diagnostic clinical and research applications. Recently, it is also finding new and important applications in speech pathology and laryngology practices. A High-Resolution Pharyngeal Manometry International Working Group was formed as a grass roots effort to establish consensus on methodology, protocol, and outcome metrics for high-resolution pharyngeal manometry (HRPM) with consideration of impedance as an adjunct modality. The Working Group undertook three tasks (1) survey what experts were currently doing in their clinical and/or research practice; (2) perform a review of the literature underprining the value of particular HRPM metrics for understanding swallowing physiology and pathophysiology; and (3) establish a core outcomes set of HRPM metrics via a Delphi consensus process. Expert survey results were used to create a recommended HRPM protocol addressing system configuration, catheter insertion, and bolus administration. Ninety two articles were included in the final literature review resulting in categorization of 22 HRPM-impedance metrics into three classes: pharyngeal lumen occlusive pressures, hypopharyngeal intrabolus pressures, and upper esophageal sphincter (UES) function. A stable Delphi consensus was achieved for 8 HRPM-Impedance metrics: pharyngeal contractile integral (CI), velopharyngeal CI, hypopharyngeal CI, hypopharyngeal pressure at nadir impedance, UES integrated relaxation pressure, relaxation time, and maximum admittance. While some important unanswered questions remain, our work represents the first step in standardization of high-resolution pharyngeal manometry acquisition, measurement, and reporting. This could potentially inform future proposals for an HRPM-based classification system specifically for pharyngeal swallowing disorders.

Recommended HRPM Protocol

- · Expert survey responses served as the basis for protocol development
- Consistent themes were:
 - Judicious use of topical anesthesia (86%)
 - Minimum 5-min accommodation period (57%)
 - Bolus delivery via syringe (100%)
 - Consistency of test boluses (71%) (e.g. IDDSI)

System to use

Any solid-state HRM system including a catheter configured with at least 10 pressure sensors at 1 cm spacing

If adjacent impedance is included then electrode segments at 2 cm spacing

Catheter placement

Requires education and training
Apply lubricant gel to catheter
Apply topical anesthesia to nasal passage
Liquid sips via straw during placement
Wait 5 min for catheter accommodation

Test boluses

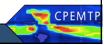
Position-seated with head neural

Delivery-syringe preferred Volumes-5 ml, 10 ml & sometimes 20 ml (case by case) Minimum 3 repeats (case by case)

Pharyngeal Lumen Occlusive Pressures

Region	Metric	N	ımbe	Consensus							
inc Bioti	Wietric	Disagree			Equivocal				Agre	e	Reached?
		1	2	3	4	5	6	7	8	9	neachea.
	Pharyngeal Contractile Integral	0	0	0	0	0	0	0	0	10	YES
Composite Measures	Velo+Mesopharyngeal Contractile Integral	2	3	2	0	0	0	1	1	1	NO
	Meso+Hypopharyngeal Contractile Integral	4	2	2	0	0	1	1	0	0	NO
	Velopharyngeal Contractile Integral	0	0	0	0	0	1	0	0	9	YES
Velopharynx	Velopharyngeal Mean Peak Pressure	1	4	4	0	0	0	0	1	0	NO
	Velopharyngeal Maximum Pressure	3	2	3	0	0	1	1	0	0	NO
	Mesopharyngeal Contractile Integral	0	1	0	0	0	1	0	0	8	YES
Mesopharynx	Mesopharyngeal Mean Peak Pressure	1	4	5	0	0	0	0	0	0	NO
	Mesopharyngeal Maximum Pressure	2	4	3	0	0	1	0	0	0	NO
	Hypopharyngeal Contractile Integral	0	1	0	0	0	1	0	2	6	YES
Hypopharynx	Hypopharyngeal Mean Peak Pressure	1	3	3	0	1	0	0	1	1	NO
	Hypopharyngeal Maximum Pressure	3	1	3	0	1	1	1	0	0	NO
LICC mus destrutitive	UES Mean Basal Pressure	1	2	0	0	0	1	1	1	4	NO
UES pre-deglutitive	UES Maximum Basal Pressure	1	3	3	0	2	0	0	1	0	NO
LICC mant danslutition	UES Contractile Integral	1	1	2	1	2	2	0	1	0	NO
UES post-deglutitive	UES Maximum Pressure	1	0	3	1	1	0	0	2	2	NO

Hypopharyngeal Intrabolus Pressure


Region	Metric	Nı	ımbe	r of A	Consensus						
		Disagree			Equivocal			Agree			Reached?
		1	2	3	4	5	6	7	8	9	Meacheu:
I la un a un ha un una u	Hypopharyngeal Pressure Increment	0	1	3	0	2	0	0	2	2	NO
Hypopharynx	Hypopharyngeal Pressure at Nadir Impedance	0	0	1	0	1	0	0	2	6	YES

UES Relaxation & Opening

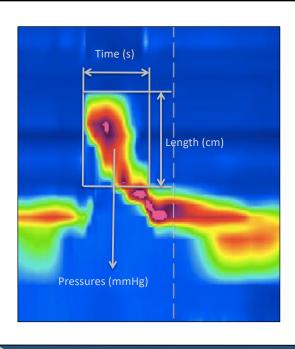
Region	Metric	Nι	ımbe	r of A	Consensus						
riegion	Wictife		Disagree			uivoc	al		Agre	e	Reached?
	1	2	3	4	5	6	7	8	9	Reactieu:	
	Nadir UES Relaxation Pressure	1	1	1	1	0	1	2	2	1	NO
UES Relaxation	UES Integrated Relaxation Pressure	0	0	0	0	0	0	0	0	10	YES
	UES Relaxation Time	0	1	0	0	0	1	0	0	8	YES
UES Opening	UES Maximum Admittance	0	0	0	0	2	0	0	1	7	YES

MUSC

PhCI MCI HCI WaxAd X IRP RT

Representative Figure of the Diagnostic Metrics Evaluated on High-Resolution Pharyngeal Manometry

Contractile Integrals of the Pharynx (PhCI), Velopharynx (VCI), Mesopharynx (MCI), and Hypopharynx (HCI), the Upper Esophageal Sphincter (UES) Integrated Relaxation Pressure (IRP), UES Relaxation Time (RT), UES Maximum Admittance (MaxAd), and Hypopharyngeal Intrabolus Pressure (hIBP).

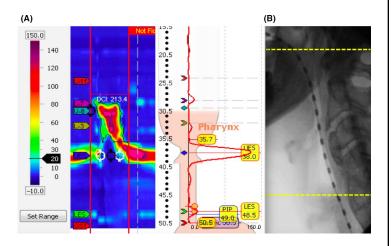

HRPM Core Outcomes

Metric class	Metric [Delphi group agreement level]	Acronym	Definition
	Pharyngeal contractile integral [Agree 100%, Neutral 0%, Disagree 0%]	PhCI	PhCI is a global measure of pharyngeal contractile vigor within a space—time box on the pressure topography plot spanning from the velopharynx superiorly to the upper margin of the UES. The PhCI is the mean pressure within this domain multiplied by duration (s) and length (cm) in units of mmHg s cm
Pharyngeal lumen occlusive pressure	Velopharyngeal contractile integral [Agree 100%, Neutral 0%, Disagree 0%]	VCI	VCI is a measure of contractile vigor within a space—time box on the pressure topography plot spanning the velopharyngeal region only. VCI is the mean pressure within this domain multiplied by duration (s) and length (cm) in units of mmHg s cm
	Mesopharyngeal contractile integral [Agree 90%, Neutral 0%, Disagree 10%]	MCI	MCI is a measure of contractile vigor within a space—time box on the pressure topography plot spanning the mesopharyngeal region only. MCI is the mean pressure within this domain multiplied by duration (s) and length (cm) in units of mmHg s cm
	Hypopharyngeal contractile integral [Agree 90%, Neutral 0%, Disagree 10%]	HCI	HCI is a measure of contractile vigor within a space-time box on the pressure topography plot spanning the hypopharyngeal region only. HCI is the mean pressure within this domain multiplied by duration (s) and length (cm) in units of mmHg s cm
	UES integrated relaxation pressure [Agree 100%, Neutral 0%, Disagree 0%]	UES IRP	UES IRP is a measure of the extent of UES relaxation. UES IRP is the median of the lowest non-consecutive 0.20–0.25 s of e-sleeve pressure in units of mmHg
UES relaxation & opening	UES relaxation time [Agree 90%, Neutral 0%, Disagree 10%]	UES RT	UES RT is a measure of the duration of UES relaxation. UES RT is the e-sleeve pressure interval below 50% of baseline or 35 mmHg, whichever is lower, in units of sec
	UES maximum admittance [Agree 80%, Neutral 0%, Disagree 20%]	UES MaxAd	UES MaxAd is a measure of extent of UES opening. UES MaxAd is the highest admittance value recorded during trans-sphincteric bolus flow in units of millisiemens (mS)
Hypopharyngeal intrabolus distension pressure	Hypopharyngeal intrabolus pressure [Agree 80%, Neutral 10%, Disagree 10%]	IBP	IBP is defined by the pressure 1 cm superior of UES apogee position at the time of maximum hypopharyngeal distension deduced from impedance topography in units of mmHg

HRPM International Working Group, Protocols & Metrics, Omari et al., 2019



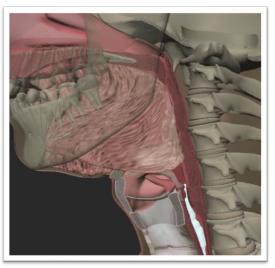
Contractile Integrals

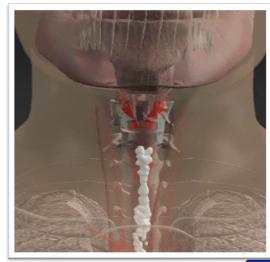

An *integral* is a mathematical term that represents an area or a generalization of an area.

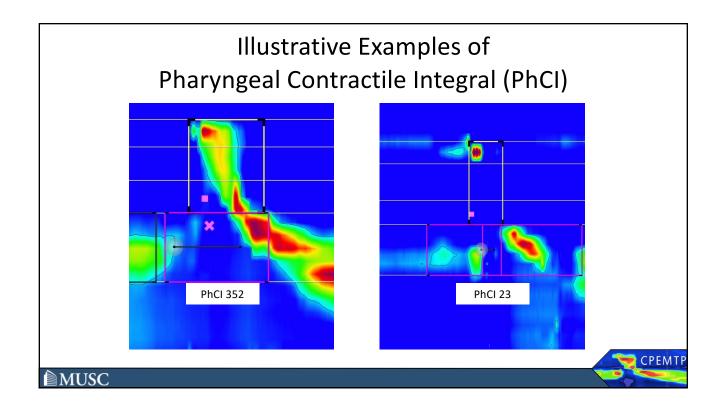
≝h/tusc H⇔kil-

Pharyngeal Contractile Integral (PhCI)

- PhCI is a global measure of pharyngeal contractile vigor.
- Measured within a space—time box on the pressure topography plot spanning from the velopharynx superiorly to the upper margin of the UES.
- The PhCI is the mean pressure within this domain multiplied by duration (s) and length (cm) in units of mmHg-s-cm.

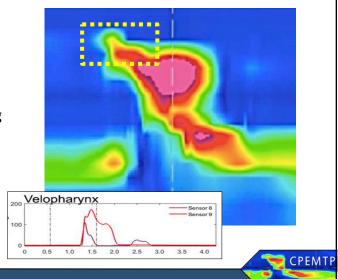


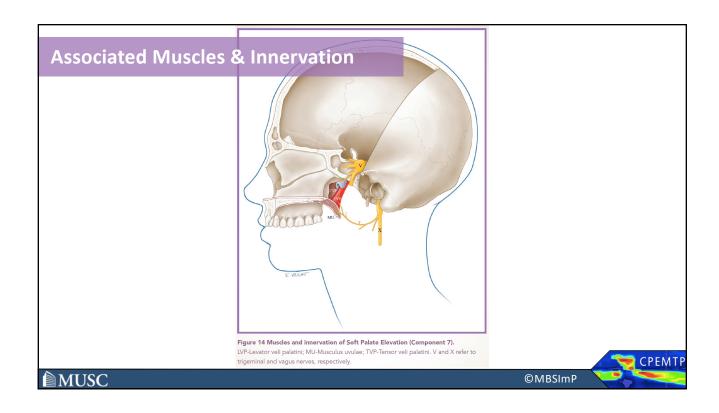


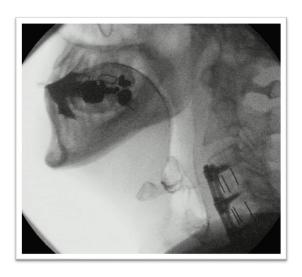

MUSC

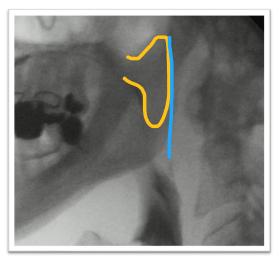
Associated Muscles & Innervation | Figure 24 Muscles and Innervation of Pharyageal Stripping Wave (Component 12). (C-Horizor pharyageal connection; NC-Mobile pharya

Soft Palate Elevation, Tongue Base Retraction, Pharyngeal Stripping Wave, Pharyngeal Contraction

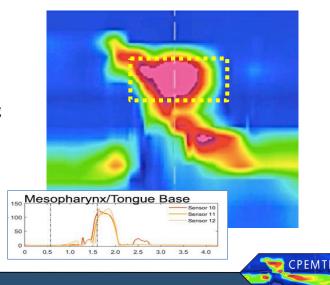


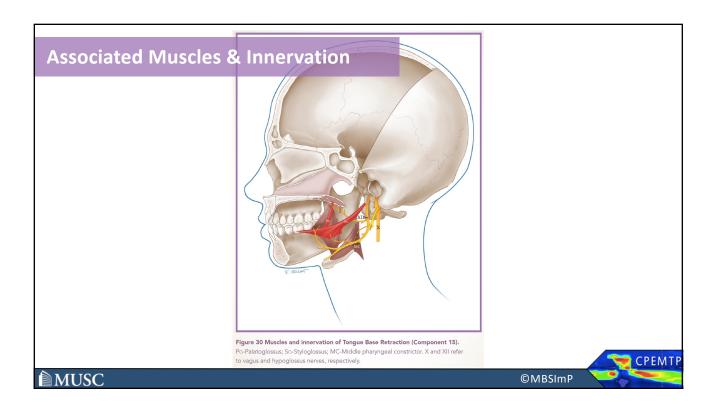


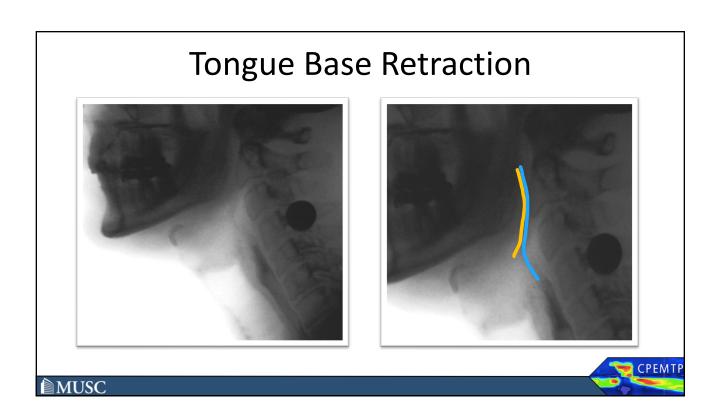

Velopharyngeal Contractile Integral (VCI)


- VCI is a measure of contractile vigor.
 - Soft palate to pharyngeal wall contact
- Measured within a space—time box on the pressure topography plot spanning the velopharyngeal region only.
- VCI is the mean pressure within this domain multiplied by duration (s) and length (cm) in units of mmHg s cm

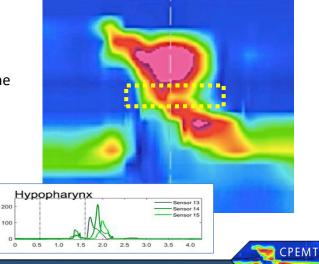
Soft Palate Elevation

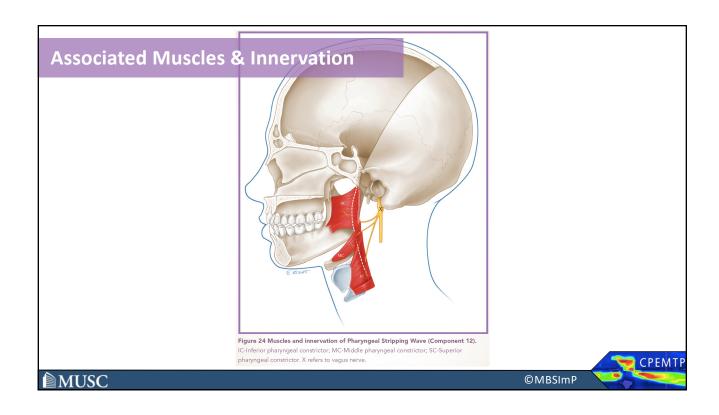


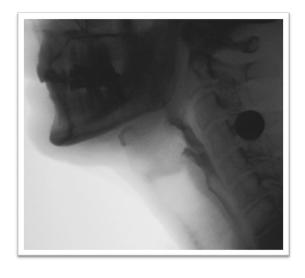

MUSC

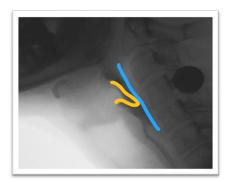

Mesopharyngeal Contractile Integral (MCI)

- MCI is a measure of contractile vigor
 - Tongue base to pharyngeal wall contact
- Measured within a space—time box on the pressure topography plot spanning the mesopharyngeal region only.
- MCI is the mean pressure within this domain multiplied by duration (s) and length (cm) in units of mmHg s cm


■MUSC




Hypopharyngeal Contractile Integral (HCI)


- HCI is a measure of contractile vigor
 - **Epiglottis to pharyngeal wall contact
- Measured within a space-time box on the pressure topography plot spanning the hypopharyngeal region only.
- HCI is the mean pressure within this domain multiplied by duration (s) and length (cm) in units of mmHg s cm

Pressure Transient: Epiglottic Inversion

- potentially erroneous and can influence numerical values generated for IBP
- may reliably predict epiglottic inversion
 clinical relevance for some patients.

MUSC

HRPM Core Outcomes

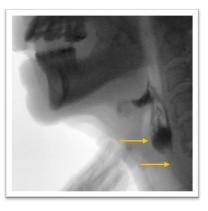
Metric class	Metric [Delphi group agreement level]	Acronym	Definition
	Pharyngeal contractile integral [Agree 100%, Neutral 0%, Disagree 0%]	PhCI	PhCI is a global measure of pharyngeal contractile vigor within a space—time box on the pressure topography plot spanning from the velopharynx superiorly to the upper margin of the UES. The PhCI is the mean pressure within this domain multiplied by duration (s) and length (cm) in units of mmHg s cm
Pharyngeal lumen occlusive pressure	Velopharyngeal contractile integral [Agree 100%, Neutral 0%, Disagree 0%]	VCI	VCI is a measure of contractile vigor within a space—time box on the pressure topography plot spanning the velopharyngeal region only. VCI is the mean pressure within this domain multiplied by duration (s) and length (cm) in units of mmHg s cm
	Mesopharyngeal contractile integral [Agree 90%, Neutral 0%, Disagree 10%]	MCI	MCI is a measure of contractile vigor within a space—time box on the pressure topography plot spanning the mesopharyngeal region only. MCI is the mean pressure within this domain multiplied by duration (s) and length (cm) in units of mmHg s cm
	Hypopharyngeal contractile integral [Agree 90%, Neutral 0%, Disagree 10%]	HCI	HCI is a measure of contractile vigor within a space-time box on the pressure topography plot spanning the hypopharyngeal region only. HCI is the mean pressure within this domain multiplied by duration (s) and length (cm) in units of mmHg s cm
	UES integrated relaxation pressure [Agree 100%, Neutral 0%, Disagree 0%]	UES IRP	UES IRP is a measure of the extent of UES relaxation. UES IRP is the median of the lowest non-consecutive 0.20–0.25 s of e-sleeve pressure in units of mmHg
UES relaxation & opening	UES relaxation time [Agree 90%, Neutral 0%, Disagree 10%]	UES RT	UES RT is a measure of the duration of UES relaxation. UES RT is the e-sleeve pressure interval below 50% of baseline or 35 mmHg, whichever is lower, in units of sec
<u>. </u>	UES maximum admittance [Agree 80%, Neutral 0%, Disagree 20%]	UES MaxAd	UES MaxAd is a measure of extent of UES opening. UES MaxAd is the highest admittance value recorded during trans-sphincteric bolus flow in units of millisiemens (mS)
Hypopharyngeal intrabolus distension pressure	Hypopharyngeal intrabolus pressure [Agree 80%, Neutral 10%, Disagree 10%]	IBP	IBP is defined by the pressure 1 cm superior of UES apogee position at the time of maximum hypopharyngeal distension deduced from impedance topography in units of mmHg


MUSC

HRPM International Working Group, Protocols & Metrics, Omari et al., 2019

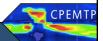
UES Relaxation & Opening

- Why is it important to look at UES parameters?
- The mechanisms that determine UES opening extent include:
 - strength and timing of supra- and infra-hyoid muscle activation (hyolaryngeal movement)
 - distension pressure generated by the swallowed bolus driven by pharyngeal propulsion (tongue base retraction, pharyngeal stripping)
 - neural deactivation and compliance of the cricopharyngeus



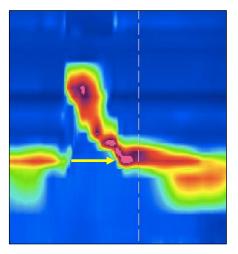
MUSC

UES Relaxation & Opening



Distension

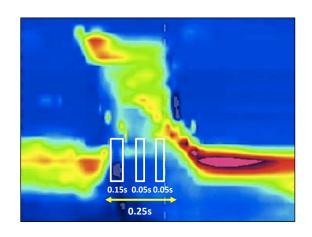
Duration


Obstruction

■MUSC

UES Relaxation Time (UES-RT)

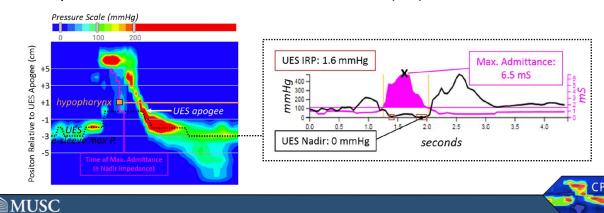
- UES-RT describes the duration of UES opening.
- Time in milliseconds from relaxation to contraction of the upper esophageal sphincter.
- Relaxation is defined as a 50% reduction in baseline pressure or less than 35 mmHg

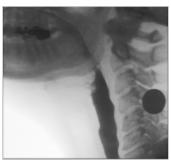


MUSC

UES Integrated Relaxation Pressure (UES-IRP)

- The lowest non-consecutive 0.20–0.25 s of UES pressure during relaxation
- Analogous to LES IRP
- · Reported in mmHg



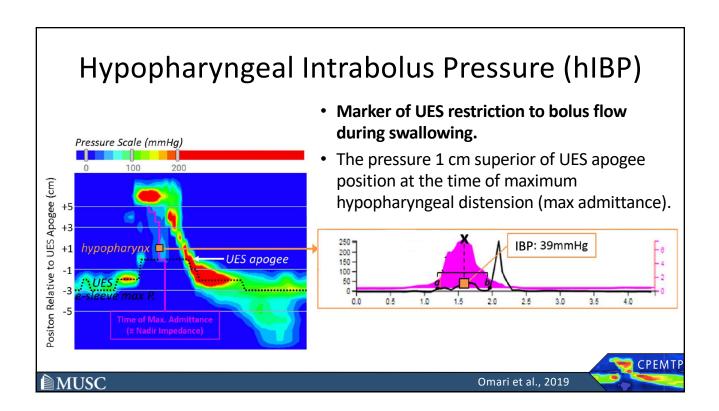

≜MUSC

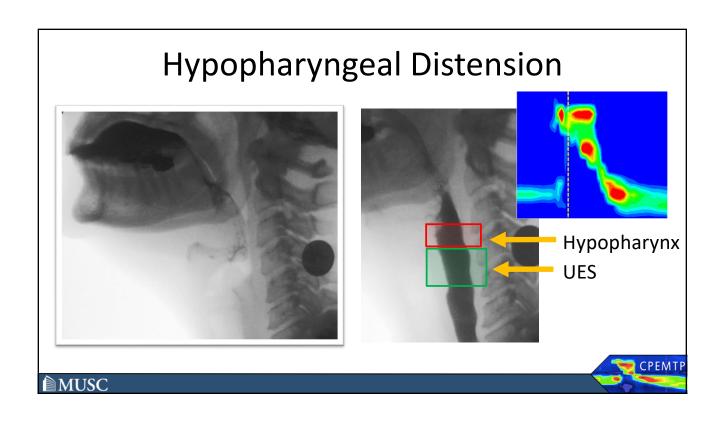
UES Maximum Admittance

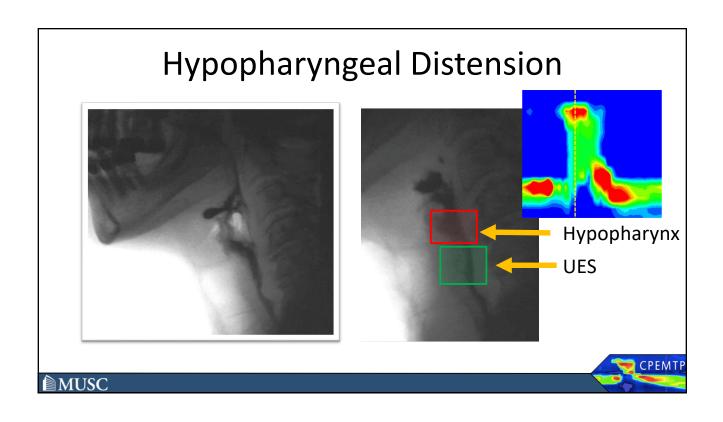
- Measure of extent of UES opening correlate of luminal diameter
- UES MaxAd is the highest admittance value recorded during transsphincteric bolus flow in units of millisiemens (mS)

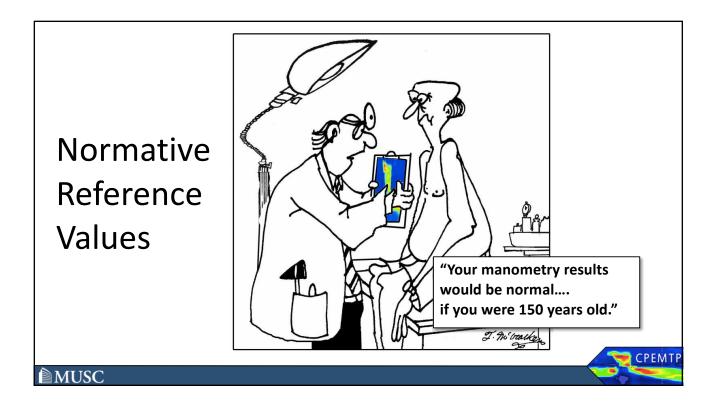
Admittance

- Impedance is the resistance to flow
 - Used to estimate changes in diameter associated with bolus movement
- Maximum impedance = highest resistance to flow
- Inverse of impedance is admittance
- Admittance is the absence of resistance to flow
- Maximum admittance = least resistance to flow




HRPM Core Outcomes


Metric class	Metric [Delphi group agreement level]	Acronym	Definition
	Pharyngeal contractile integral [Agree 100%, Neutral 0%, Disagree 0%]	PhCI	PhCI is a global measure of pharyngeal contractile vigor within a space—time box on the pressure topography plot spanning from the velopharynx superiorly to the upper margin of the UES. The PhCI is the mean pressure within this domain multiplied by duration (s) and length (cm) in units of mmHg s cm
Pharyngeal lumen occlusive pressure	Velopharyngeal contractile integral [Agree 100%, Neutral 0%, Disagree 0%]		VCI is a measure of contractile vigor within a space—time box on the pressure topography plot spanning the velopharyngeal region only. VCI is the mean pressure within this domain multiplied by duration (s) and length (cm) in units of mmHg s cm
	Mesopharyngeal contractile integral [Agree 90%, Neutral 0%, Disagree 10%]	MCI	MCI is a measure of contractile vigor within a space—time box on the pressure topography plot spanning the mesopharyngeal region only. MCI is the mean pressure within this domain multiplied by duration (s) and length (cm) in units of mmHg s cm
	Hypopharyngeal contractile integral [Agree 90%, Neutral 0%, Disagree 10%]	1	HCI is a measure of contractile vigor within a space-time box on the pressure topography plot spanning the hypopharyngeal region only. HCI is the mean pressure within this domain multiplied by duration (s) and length (cm) in units of mmHg s cm
	UES integrated relaxation pressure [Agree 100%, Neutral 0%, Disagree 0%]	UES IRP	UES IRP is a measure of the extent of UES relaxation. UES IRP is the median of the lowest non-consecutive 0.20–0.25 s of e-sleeve pressure in units of mmHg
UES relaxation & opening	UES relaxation time [Agree 90%, Neutral 0%, Disagree 10%]	UES RT	UES RT is a measure of the duration of UES relaxation. UES RT is the e-sleeve pressure interval below 50% of baseline or 35 mmHg, whichever is lower, in units of sec
	UES maximum admittance [Agree 80%, Neutral 0%, Disagree 20%]	UES MaxAd	UES MaxAd is a measure of extent of UES opening. UES MaxAd is the highest admittance value recorded during trans-sphincteric bolus flow in units of millisiemens (mS)
	Hypopharyngeal intrabolus pressure [Agree 80%, Neutral 10%, Disagree 10%]	IBP	IBP is defined by the pressure 1 cm superior of UES apogee position at the time of maximum hypopharyngeal distension deduced from impedance topography in units of mmHg



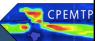
HRPM International Working Group, Protocols & Metrics, Omari et al., 2019

Pharyngeal High-Resolution Manometry: A Scoping Review and Meta-Analysis of Normative Data

Rameen K. Walters BS, Rachana Gudipudi, MD, Tamar Gordis, BA, Kate Davidson, MS, Shaun A. Nguyen, MD, Ashli K. O'Rourke, MD

Provisionally accepted for publication in Neurogastroenterology and Motility

Background


- High resolution pharyngeal manometry (HRPM) is an emerging technology with increasing adoption and need for standardization of practices
- Previous studies have reported some relevant normative data [1-2] but numbers are small and variability is high
- Unknown if normative data from one manufacturer/catheter is comparable to next
- Commercially available integrated software programs do not include pharyngeal normative data

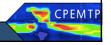
MUSC 1) Cock C. et al. Geriatrics (Basel) 2018; 3. 2) Nativ-Zeltzer et al Neurogastroenterology & Motility 2016; 28:721-731

Study Objective

We aimed to analyze the HRPM normative data available in the existing literature for different high resolution manometry systems with a focus on core outcomes identified by a HRPM International Working Group consensus.

Diagnostic Metrics

Dysphagia https://doi.org/10.1007/s00455-019-10023-y

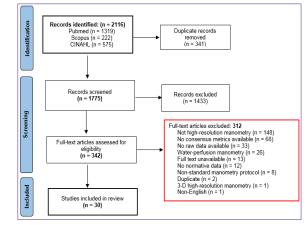

ORIGINAL ARTICLE

High-Resolution Pharyngeal Manometry and Impedance: Protocols and Metrics—Recommendations of a High-Resolution Pharyngeal Manometry International Working Group

Taher I. Omari¹ · Michelle Ciucci² · Kristin Gozdzikowska³ · Ester Hernández² · Katherine Hutcheson⁴ · Corinne Jones² · Julia Maclean⁵ · Nogah Nativ-Zeltzerº · Emily Plowman7 · Nicole Rogus-Pulia² · Nathalie Rommel® · Ashli O'Rourke² ©

Metric	Acronym
Pharyngeal contractile integral	PhCI
Velopharyngeal contractile integral	VCI
Mesopharyngeal contractile integral	MCI
Hypopharyngeal contractile integral	HCI

Metric	Acronym
UES integrated relaxation pressure	UES IRP
UES relaxation time	UES RT
UES maximum admittance	UES MaxAd
Hypopharyngeal intrabolus pressure	IBP



Check for

MUSC

Methods

Prisma Diagram

Search Terms

- Combination of MeSH terms and key words for the following concepts and related words:
 - pharynx
 - upper esophageal sphincter
 - manometry
 - high resolution pharyngeal manometry,
 - high resolution impedance
- Search developed by librarian and peer-reviewed by colleagues
- June 2021

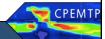
Results

- 30 studies met final inclusion criteria
 - Only 12/30 studies (40%) provided data for >2 consensus metrics
- Significant heterogeneity in methodology
 - 4 different manufacturers
 - 6 different catheter diameters
 - 5 different software analysis programs
 - 12 different bolus types (including different volumes and viscosities)
 - 3 different types of positioning

MUSC

Types of Catheters and Systems Used

Medtronic System: Manoscan <u>Catheters</u>: 2.64, 2.7, 2.75, 4, 4.2 mm <u>Software</u>: Manoview, MATLAB


<u>Laborie System</u>: Unisensor, Unisensor AG, <u>Catheters</u>: 2.7, 3.2, 4.2 mm

Software: Swallow Gateway, Laborie/MMS Database,

MATLAB

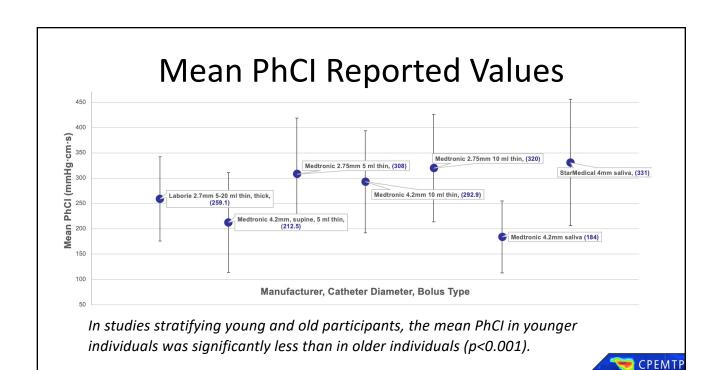
ps://www.medtronic.com/covidien/en-us/products/motility-testing/manoscan-eso-high-resolution-manometry-system.html

Types of Catheters and Systems Used

Sandhill System: InSIGHT Catheters: 4, 4.2 mm Software: BioVIEW

StarMedical System: PD1236K

Catheters: 4mm


Software: Swallow Gateway

MUSC

■MUSC

nttps://www.machinio.com/sandhill-scientific/insight/general-medical-equipment#results http://starmedical.co.in/eng/Product_Guid/Starlet/index_html

Pharyngeal Contractile Integral

Laborie 2.7mm, 5-20 mL thin and thick boluses (averaged)

Study	n	Mean PhCl (mmHg·cm·s)	SD	Bolus	Manometry Catheter Type	Catheter diameter		Positioning	Analysis Software
Ferris 2021 Young (< 60 years)	36	253	96	5-20 ml thin, thick	Unisensor (Laborie, Attikon, Switzerland)	(mm) 2.7	(Hz) NR*	Upright	Swallow Gateway
Ferris 2021 Old (> 60 years)	14	237	105	5-20 ml thin, thick	Unisensor (Laborie, Attikon Switzerland)	2.7	NR	Upright	Swallow Gateway
Schar 2021	19	287	43.3	5-20 ml thin, thick	Unisensor AG (Attikon Switzerland), Solar GI (MMS)	2.7	NR	Upright	Swallow Gateway
Weighted Average	69	259.1	83.3		, ,				

*NR = not reported

Pharyngeal Contractile Integral

Medtronic 4.2mm, 5 mL thin boluses

IVICACIOING I		, 😊		20.030	-0				
Study	n	Mean PhCI (mmHg·cm·s)	SD	Bolus	Manometry Catheter Type	Catheter diameter (mm)	Sampling Frequency (Hz)	Positioning	Analysis Software
Balasubramanian 2017	32	182	76	5ml water	Manoscan (Medtronic)	4.2	50	Upright	Manoview
Balasubramanian 2017	32	200	83	5ml water	Manoscan (Medtronic)	4.2	50	Supine	Manoview
Suntrup-Krueger 2021	10	252.6	148.6	5ml water	Manoscan Eso Z (Medtronic)	4.2	NR	Supine	Manoview
Weighted Average (supine only)	42	212.5	98.6						

Medtronic 2.75mm, 5 mL thin boluses

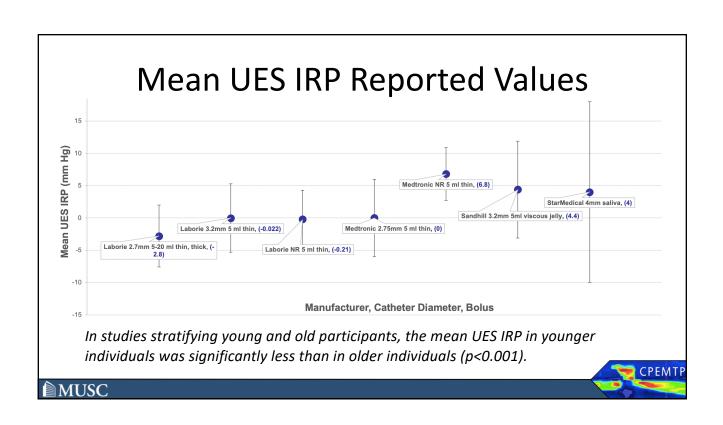
Study	n	Mean PhCI (mmHg·cm·s)		Bolus	Manometry Catheter Type				Analysis Software
Nativ-Zeltzer 2016	44	308	111	5ml barium	Manoscan 360 (Medtronic)	2.75	35	Upright	Manoview

MUSC

*NR = not reported

Pharyngeal Contractile Integral

Medtronic 4.2mm, 10 mL thin boluses


Study	n	Mean PhCI (mmHg·cm·s)	SD	Bolus	Manometry Catheter Type	Catheter diameter (mm)	Sampling Frequency (Hz)	Positioning	Analysis Software
Balasubramanian 2017	32	288	128	10 ml water	Manoscan (Medtronic)	4.2	50	Upright	Manoview
Rosen 2020	11	307	22	10 ml barium	Manoscan 360 (Medtronic)	4.2	50	Upright	MATLAB
Weighted Average	43	292.9	100.9						

Medtronic 2.75mm, 10 mL thin boluses

Study	n	Mean PhCl (mmHg·cm·s)	SD	Bolus	Manometry Catheter Type			Positioning	Analysis Software
Nativ-Zeltzer 2016	44	320	106	10 ml barium	Manoscan 360 (Medtronic)	2.75	35	Upright	Manoview



UES Integrated Relaxation Pressure

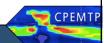
Laborie 2.7mm, 5-20 mL thin and thick boluses (averaged)

Study	n	Mean UES IRP (mm Hg)	SD	Bolus	Manometry Catheter Type	Catheter diameter (mm)	Sampling Frequency (Hz)	Position	Analysis Software
Ferris 2021 Young (< 60 years)	36	-3.6	4.8	5-20 ml thin, thick	Unisensor (Laborie, Attikon Switzerland)	2.7	NR	Upright	Swallow Gateway
Ferris 2021 Old (> 60 years)	14	-1.8	5.1	5-20 ml thin, thick	Unisensor (Laborie, Attikon Switzerland)	2.7	NR	Upright	Swallow Gateway
Schar 2021	19	-2	4.4	5-20 ml thin, thick	Unisensor AG (Laborie); Acquisition: Solar GI	2.7	NR	Upright	Swallow Gateway
Weighted Average	69	-2.8	4.8						

UES Integrated Relaxation Pressure

Laborie 5mL thin boluses

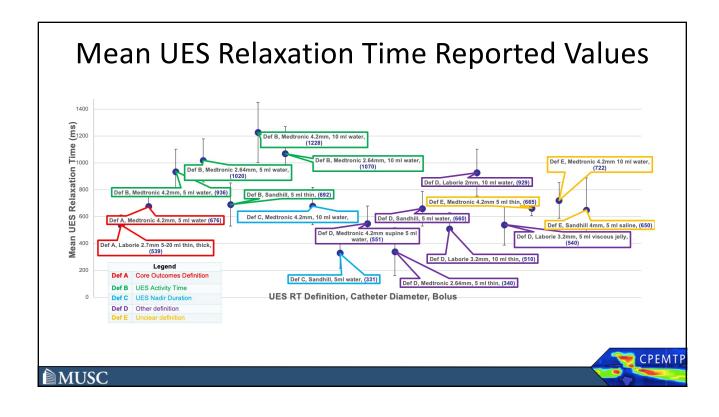
Study	n	Mean UES IRP (mm Hg)	SD	Bolus	Manometry Catheter Type	Catheter Diameter (mm)	Sampling Frequency (Hz)	Position	Analysis Software
Baha 2020	40	0	4.4	5 ml water	Unisensor AG (Laborie/MMS)	NR	NR	Semi-supine	Laborie/MMS Database
Cock 2016 Young (< 80 years)	50	-1.6	3.9	5 ml saline	Unisensor (MMS)	NR	20	Upright	MATLAB
Cock 2016 Old (> 80 years)	16	3.6	6.5	5 ml saline	Unisensor (MMS)	NR	20	Upright	MATLAB
Omari 2015 Young (< 58 years)	32	-3.0	3.0	5 ml saline	Unisensor (Laborie); Pressure acquisition: Solar Gl	3.2	20	Upright	NR
Omari 2015 Old (> 58 years)	35	2.7	7.4	5 ml saline	Unisensor (Laborie); Pressure acquisition: Solar Gl	3.2	20	Upright	NR



UES Integrated Relaxation Pressure

Medtronic 5mL thin boluses

Study	n	Mean UES IRP (mm Hg)	SD	Bolus type	Manometry Catheter Type	Catheter diameter (mm)	Sampling Frequency (Hz)	Positioning	Analysis Software
Nativ-Zeltzer 2016	44	0	6	5 ml barium	Manoscan 360 (Medtronic)	2.75	35	Upright	Manoview
Weijenborg 2014	50	6.8	4.1	5 ml water	Medtronic	NR	37	Supine	Manoview

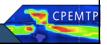

UES Relaxation Time

Great Variability in Definitions!

- <u>Definition A: Core outcomes definition</u> (4 studies)
 - interval in which pressure is below 50% of baseline or 35 mmHg, whichever is lower, in units of seconds
- <u>Definition B</u>: **UES activity time** (6 studies)
 - interval between pre-UES peak and post-UES peak
- <u>Definition C</u>: <u>UES nadir duration</u> (3 studies)
 - duration of relaxation after pre-swallow UES constriction or bolus passage time
- <u>Definition D</u>: Various other definitions (7 studies)
 - e.g., interval between opening and closing, 10% decrease in pressure from resting value, different algorithm calculations, etc.
- <u>Definition E</u>: <u>Unreported definition</u> (5 studies)



UES Relaxation Time Reported Values


- Average UES RT was longer in the upright position compared to supine (p<0.001)
- 10mL thin boluses had significantly longer average UES RT compared to 5mL thin (p<0.001).
- Average UES RT was longer with both a 10mL and 5mL bolus, when utilizing a 2.64mm catheter compared to a 4 or 4.2mm catheter (p<0.001).
- Circumferential catheters demonstrated a higher average UES RT compared with unidirectional catheters (p<0.001).

Conclusion

- Depending on the equipment used, definitions and the protocols performed, there can be considerable variability in normative values for high-resolution pharyngeal manometry.
- Must take these variables into account in clinical practice and when comparing results in the literature.
- Given low numbers in the studies, more normative data are needed to establish valid reference values for high-resolution pharyngeal manometry metrics.

HHS Public Access

Author manuscript

Neurogastroenterol Motil. Author manuscript; available in PMC 2017 May 01.

Published in final edited form as:

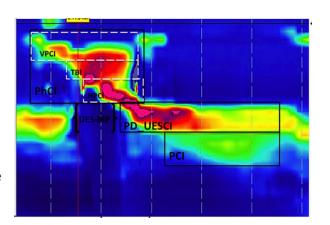
Neurogastroenterol Motil. 2016 May; 28(5): 721-731. doi:10.1111/nmo.12769.

Pressure Topography Metrics For High-Resolution Pharyngeal-Esophageal Manofluorography - A Normative Study of Younger and Older Adults

Nogah Nativ-Zeltzer 1 , Jeri A. Logemann 1,† , Steven G. Zecker 1 , and Peter J. Kahrilas 2

¹Department of Communication Sciences and Disorders, Evanston, Illinois

²Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, U.S.A.


Abstract

Background—We aimed to define normative values for novel pressure topography metrics for high-resolution pharyngeal-esophageal manofluorography. The effects of age, gender and bolus properties were examined.

Methods—Concurrent high-resolution manometry (HRM) and videofluoroscopy data were collected from 22 younger (aged 21–40) and 22 older (aged 60–80) healthy subjects. Pressure topography was analyzed by correlating pressure domains with videofluoroscopic events. Nine pressure topography metrics of the pharyngeal and proximal esophageal swallow were extracted; four of these were also compared with previously obtained esophageal HRM studies to assess the effects of catheter diameter.

Methods

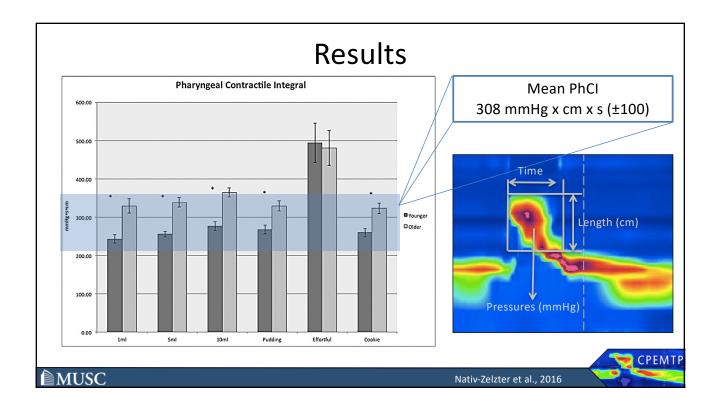
- Demographics
 - 44 healthy subjects
 - Dichotomized ages:
 - 22 participants aged < 40
 - 22 participants aged > 60
- Methods
 - Simultaneous pharyngeal manometryfluoroscopy
 - Upright positioning
 - Medtronic 2.75 mm catheter and software
 - Various volumes & consistencies
 - 1 mL, 5 mL, 10 mL thin liquid
 - 3 mL pudding
 - 1/4 cookie with 3 mL barium paste

MUSC

Nativ-Zelzter et al., 2016

Results

Table 2 Statistical summary of pharyngeal HREPT measurements for 44 normal subjects; 22 young and 22 elderly


	Liquid						
	1 mL	5 mL	10 mL	Pudding (3 mL)	Effortful	Cookie	
PhCI	308 ± 110 (169-504)	308 ± 111 (162-504)	320 ± 106 (176-541)	305 ± 94 (161-480)	495 ± 252 (235-1060)	296 ± 99 (148-500)	
(mmHg/s/cm)							
Young	$259 \pm 58* (169-374)$	256 ± 84* (154-433)	276 ± 97* (164-502)	$272 \pm 87 \cdot (159-475)$	494 ± 270 (229-1081)	259 ± 92* (138-483)	
Old	$355 \pm 128 * (180-708)$	$363 \pm 110^{\circ} (216-588)$	$364 \pm 97^{\circ} (191-548)$	$339 \pm 89 \cdot (170 - 487)$	$497 \pm 238 (231-1094)$	333 ± 94* (173-501)	
P-Max (mmHg)	$228 \pm 60 (148-327)$	229 ± 62 (142-338)	$222 \pm 51 (153-317)$	$233 \pm 61 (157 - 364)$	$247 \pm 69 (146-353)$	$218 \pm 45 (154-294)$	
Young	$207 \pm 61^{\circ} (138-379)$	$211 \pm 64^{\circ} (130-342)$	$202 \pm 47^{\circ} (134-286)$	216 ± 59* (149-345)	$232 \pm 56 (143-330)$	200 ± 37* (148-268	
Old	248 ± 52* (163-328)	249 ± 54* (173-340)	241 ± 47* (173-334)	249 ± 58* (164-365)	$262 \pm 77 (174 - 475)$	237 ± 44* (168-324	
VPCI (mmHg/s/cm)	$122 \pm 64 (43-276)$	$129 \pm 63 (51-291)$	$147 \pm 69 (63 - 319)$	$116 \pm 54 (37-243)$	199 ± 103 (65-429)	$109 \pm 49 (31-204)$	
Young	103 ± 39* (0-172)	106 ± 52* (18-211)	125 ± 61* (54-292)	107 ± 57* (9-231)	$215 \pm 130 (114-463)$	94 ± 40* (29-184)	
Old	140 ± 76* (60-333)	152 ± 65* (70-308)	167 ± 70° (72-323)	$125 \pm 50^{\circ} (41-248)$	$184 \pm 69 (63 - 334)$	122 ± 53* (33-230)	
TBI (mmHg/s/cm)	$103 \pm 38 (52-172)$	99 ± 39 (43-166)	$94 \pm 38 (43-160)$	$103 \pm 34 (49-170)$	$164 \pm 93 (61 - 383)$	99 ± 36 (47-171)	
Young	93 ± 26* (52-158)	88 ± 33* (42-160)	86 ± 37* (44-166)	94 ± 32* (45-175)	178 ± 111 (58-413)	92 ± 39 (39-197)	
Old	112 ± 44* (50-215)	$110 \pm 41 \cdot (49 - 177)$	102 ± 38* (38-159)	111 ± 34* (60-169)	$151 \pm 71 (69 - 340)$	$106 \pm 32 (59-172)$	
HPCI (mmHg/s/cm)	$82 \pm 40 (37 - 155)$	$73 \pm 36 (31-142)$	$71 \pm 32 (28-134)$	$81 \pm 36 (35-154)$	$127 \pm 101 (46-337)$	$80 \pm 35 (34-156)$	
Young	59 ± 21* (31-107)	55 ± 21* (25-93)	55 ± 24* (20-105)	63 ± 25* (31-109)	99 ± 56 (44-236)	66 ± 32* (30-157)	
Old	$103 \pm 42^{\circ} (49-166)$	92 ± 39* (45-162)	86 ± 33* (46-142)	98 ± 37* (53-171)	$154 \pm 125 (65-531)$	94 ± 32* (51-163)	

Values are mean ± SD (5-95th percentile). Asterisks denote statistical significance (p < 0.05) for comparison between the two age groups.

Nativ-Zelzter et al., 2016

Highlighted Findings

- · Age Related Differences
 - For normal swallows, older individuals had higher pharyngeal contractility &
 UES IBP as compared to younger subjects
 - · Compensatory response with aging?
- No consistent gender differences were observed with normal swallows

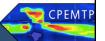
"Age-related differences found in this study should be considered when applying these data to clinical populations."

PhCI may suffice as a "summary measure of pharyngeal contractility ... with the more discrete measures ... adding resolution in situations of impairment."

MUSC

Nativ-Zelzter et al., 2016

References


- 1. Cock C, Omari T. Systematic Review of Pharyngeal and Esophageal Manometry in Healthy or Dysphagic Older Persons (>60 years). Geriatrics (Basel) 2018; 3.
- 2. Nativ-Zeitzer N, Logemann JA, Zecker SG, Kahrilas PJ. Pressure topography metrics for high-resolution pharyngeal-esophageal manofluorography—a normative study of younger and older adults. Neurogastroenterology & Motility 2016; 28:721-731
- 3. Omari TI, Ciucci M, Gozdzikowska Ket al. High-Resolution Pharyngeal Manometry and Impedance: Protocols and Metrics-Recommendations of a High-Resolution Pharyngeal Manometry International Working Group. Dysphagia 2020; 35:281-295.
- 4. Schar MS, Omari TI, Woods CMet al. Altered swallowing biomechanics in people with moderate-severe obstructive sleep apnea. J Clin Sleep Med 2021; 17:1793-1803.
- 5. Ferris L, Doeltgen S, Cock Cet al. Modulation of pharyngeal swallowing by bolus volume and viscosity. American Journal of Physiology-Gastrointestinal and Liver Physiology 2021; 320:G43-G53.
- 6. Balasubramanian G, et al. Characterization of pharyngeal peristaltic pressure variability during volitional swallowing in healthy individuals. Neurogastroenterology & Motility 2017; 29:e13119.
- 7. Suntrup-Krueger S, Muhle P, Kampe let al. Effect of Capsaicinoids on Neurophysiological, Biochemical, and Mechanical Parameters of Swallowing Function. Neurotherapeutics 2021; 18:1360-1370.
- 8. Rosen SP et al. Pressure abnormalities in patients with Zenker's diverticulum using pharyngeal high-resolution manometry. Laryngoscope Investigative Otolaryngology 2020; 5:708-717.
- 9. Aoyagi Y, Ohashi M, Ando Set al. Effect of Tongue-Hold Swallow on Pharyngeal Contractile Properties in Healthy Individuals. Dysphagia 2021; 36:936-943.
- 10. Lippert D, Hoffman MR, Britt CJet al. Preliminary Evaluation of Functional Swallow After Total Laryngectomy Using High-Resolution Manometry. Annals of Otology, Rhinology & Laryngology 2016; 125:541-549.
- 11. Baha S, Sibel E, Duygu D, Ezgi K, Tayfun K, Serhat B. Oropharyngeal swallowing functions are impaired in patients with naive-achalasia. European Archives of Oto-Rhino-Laryngology 2020; 277:1219-1226
- 12. Cock C, Besanko L, Kritas Set al. Maximum upper esophageal sphincter (UES) admittance: a non-specific marker of UES dysfunction. Neurogastroenterology & Motility 2016; 28:225-233.
- 13. Omari TI, Wiklendt L, Dinning P, Costa M, Rommel N, Cock C. Upper esophageal sphincter mechanical states analysis: a novel methodology to describe UES relaxation and opening. Frontiers in Systems Neuroscience 2015: 8
- 14. Weijenborg PW, Kessing BF, Smout AJPM, Bredenoord AJ. Normal values for solid-state esophageal high-resolution manometry in a European population; an overview of all current metrics. Neurogastroenterology & Motility 2014; 26:654-659.
- 15. Doeltgen SH, Ong E, Scholten I, Cock C, Omari T. Biomechanical Quantification of Mendelsohn Maneuver and Effortful Swallowing on Pharyngoesophageal Function. Otolaryngology–Head and Neck Surgery 2017; 157:816-823.
- 16. Park C-Het al. Ability of High-Resolution Manometry to Determine Feeding Method and to Predict Aspiration Pneumonia in Patients With Dysphagia. Official journal of the American College of Gastroenterology | ACG 2017; 112:1074-1083.
- 17. Kyung Jae Y, It, supet al. Videofluoroscopic and Manometric Evaluation of Pharyngeal and Upper Esophageal Sphincter Function During Swallowing. Journal of Neurogastroenterology and Motility 2014; 20:352-361.

References

- 18. Hoffman MR. Ciucci MR. Mielens JD. Jiand JJ. McCulloch TM. Pharvnoeal swallow adaptations to bolus volume measured with high-resolution manometry. The Larvnooscope 2010: 120:2367-2373.
- Matsubara K, Kumai Y, Samejima Y, Yumoto E. Swallowing pressure and pressure profiles in young healthy adults. The Laryngoscope 2014; 124:711-717.
- 20. Matsubara K, Kumai Y, Kamenosono Y, Samelima Y, Yumoto E. Effect of three different chin-down maneuvers on Swallowing pressure in healthy young adults. The Laryngoscope 2016: 126:437-441.
- 21. Mcculloch TM, Hoffman MR, Ciucci MR. High-Resolution Manometry of Pharyngeal Swallow Pressure Events Associated with Head Turn and Chin Tuck. Annals of Otology, Rhinology & Laryngology 2010; 119:369-376.
- 22. Mielens JD, Hoffman MR, Ciucci MR, Jiang JJ, McCulloch TM. Automated Analysis of Pharyngeal Pressure Data Obtained with High-Resolution Manometry. Dysphagia 2011; 26:3-12.
- 23. Park D, Shin CM, Ryu JS. Effect of Different Viscosities on Pharyngeal Pressure During Swallowing: A Study Using High-Resolution Manometry. Arch Phys Med Rehabil 2017; 98:487-494.
- 24. Lee SM, Lee BH, Kim JW, Jang JY, Jang EG, Ryu JS. Effects of Chin-Down Maneuver on Pharyngeal Pressure Generation According to Dysphagia and Viscosity. Ann Rehabil Med 2020; 44:493-501.
- 25. Ghosh SK, Pandolfino JE, Zhang Q, Jarosz A, Kahrilas PJ. Degluttive upper esophageal sphincter relaxation: a study of 75 volunteer subjects using solid-state high-resolution manometry. American Journal of Physiology-Gastrointestinal and Liver Physiology 2006; 291:G525-G531.
- 26. Xiang X-L, Wang A, Tu Let al. The motility of esophageal sphincters during liquid and solid bolus swallows: a multicenter normative value study of high-resolution manometry in China. Neurogastroenterology & Motility 2017; 29:e12914.
- 27. Park C-H, Kim D-K, Lee Y-Tet al. Quantitative Analysis of Swallowing Function Between Dysphagia Patients and Healthy Subjects Using High-Resolution Manometry. Ann Rehabil Med 2017; 41:776-785.
- 28. Omari TI, Dejaeger E, Van Beckevoort Det al. A Method to Objectively Assess Swallow Function in Adults With Suspected Aspiration. Gastroenterology 2011; 140:1454-1463.
- 29. Kallusky J, Zimmerer R, Tavassol F, Gellrich N-C, Ptok M, Jungheim M. Deglutition in Patients With Hypernasality Associated With Unilateral Cleft Lip and Palate Evaluated With High-Resolution Manometry. The Cleft Palate-Craniofacial Journal 2020; 57:238-244.
- 30. Lan Y, Xu G-q, Yu F, Lin T, Jiang L-s, Liu F. The effect of bolus consistency on swallowing function measured by high-resolution manometry in healthy volunteers. The Laryngoscope 2017; 127:173-178.
- 31. Lee TH, Lee JS, Hong SJet al. High-resolution manometry: reliability of automated analysis of upper esophageal sphincter relaxation parameters. Turk J Gastroenterol 2014; 25:473-480.
- 32. Peng L, Patel A, Kushnir V, Gyawali CP. Assessment of Upper Esophageal Sphincter Function on High-resolution Manometry: Identification of Predictors of Globus Symptoms. Journal of Clinical Gastroenterology 2015; 49:95-100.
- 33. Lee TH, Lee JS, Park JWet al. High-resolution impedance manometry facilitates assessment of pharyngeal residue and oropharyngeal dysphagic mechanisms. Diseases of the Esophagus 2014; 27:220-229.
- 34. Winiker K, Gillman A, Guiu Hernandez E, Huckabee M-L, Gozdzikowska K. A systematic review of current methodology of high resolution pharyngeal manometry with and without impedance. European Archives of Oto-Rhino-Laryngology 2019; 276:631-645.

CPEMTP