

Abnormal Swallowing: Utilization of Pharyngeal Manometry

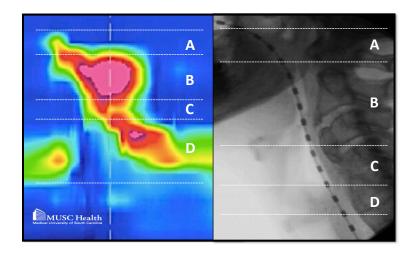
Ashli K. O'Rourke, M.S., M.D.

Associate Professor, Director of Laryngology
Mark & Evelyn Trammell Endowed Chair in Otolaryngology
Department of Otolaryngology – Head and Neck Surgery
Medical University of South Carolina

Outline

- Background
- Diagnostic Metrics

Changing What's Possible | MUSChealth.org


High Resolution Pharyngeal Manometry

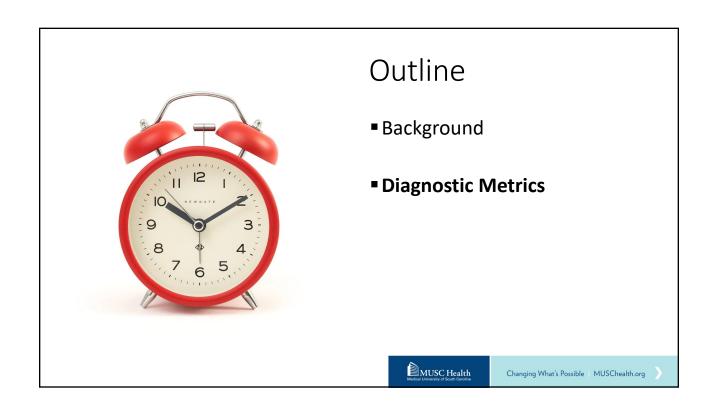
- Pharyngeal muscle contraction
 - Quantitative assessment
 - Composite information
 - Intrabolus pressures
- <u>Upper Esophageal Sphincter</u>
 - Quantitative assessment
 - Coordination & Timing
 - Relaxation duration
 - Relaxation pressures

Manometric Regions

A) Velopharynx Region

- Soft palate
- Superior pharyngeal constrictors

B) Mesopharyngeal


- Tongue base
- Inferior pharyngeal constrictors
- Middle pharyngeal constrictors

C) Hypopharynx Region

• Inferior pharyngeal constrictors

D) UES Region

• Pharyngoesophageal segment

Dysphagia https://doi.org/10.1007/s00455-019-10023-y

ORIGINAL ARTICLE

High-Resolution Pharyngeal Manometry and Impedance: Protocols and Metrics—Recommendations of a High-Resolution Pharyngeal Manometry International Working Group

Taher I. Omari¹ · Michelle Ciucci² · Kristin Gozdzikowska³ · Ester Hemández³ · Katherine Hutcheson⁴ · Corinne Jones² · Julia Maclean² · Nogah Nativ-Zeltzer² · Emily Plowman² · Nicole Rogus-Pulia² · Nathalie Rommel® · Ashii O'Rourke² ©

Metric	Acronym
Pharyngeal contractile integral	PhCI
Velopharyngeal contractile integral	VCI
Mesopharyngeal contractile integral	MCI
Hypopharyngeal contractile integral	HCI

Metric	Acronym
UES integrated relaxation pressure	UES IRP
UES relaxation time	UES RT
UES maximum admittance	UES MaxAd
Hypopharyngeal intrabolus pressure	IBP

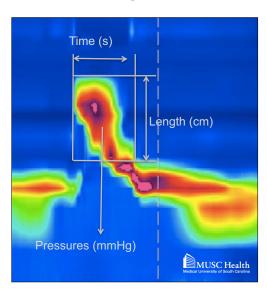
Check for updates

METRICS

Dysphagla https://doi.org/10.1007/s00455-019-10023-y

High-Resolution Pharyngeal Manometry and Impedance: Protocols and Metrics—Recommendations of a High-Resolution Pharyngeal Manometry International Working Group

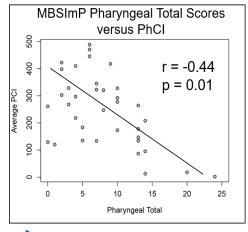
Taher I. Omari¹ - Michelle Ciucci² - Kristin Gozdzikowska³ - Ester Hernández³ - Katherine Hutcheson⁴ - Corinne Jones¹ - Julia Maclean⁵ - Nogah Nativ-Zeltzer² - Emily Plowman² - Nicole Rogus-Pulia² - Nathalie Rommel® - Ashli O'Route² ®


Metric	Acronym
Pharyngeal contractile integral	PhCI
Velopharyngeal contractile integral	VCI
Mesopharyngeal contractile integral	MCI
Hypopharyngeal contractile integral	нсі

Metric	Acronym
UES integrated relaxation pressure	UES IRP
UES relaxation time	UES RT
UES maximum admittance	UES MaxAd
Hypopharyngeal intrabolus pressure	IBP

Check for

Pharyngeal Contractile Integral


An integral is a mathematical term that represents an area or a generalization of an area.

Illustrative Examples of Pharyngeal Contractile Integral (PhCI) Phci 352 Phci 23

The Relationship Between PhCI & Findings on Videofluoroscopy

- Worsening MBS ImP Pharyngeal Total scores correlated with decreased pharyngeal contractility (PhCI).
- PAS scores for thin liquids were significantly different between low & High PhCl groups.

Table 2: Comparison of Penetration Aspiration Scale Results by Pharyngeal Contractile Integral Groups						
	Overall	Thin	Nectar	Honey	Pudding	Solid
Higher PCI Group	1.21	1.44	1.28	1.11	1.11	1.11
Lower PCI Group	1.99	3.78	2.29	1.27	1.00	1.07
p value	0.03	0.01	0.06	0.05	0.80	0.97

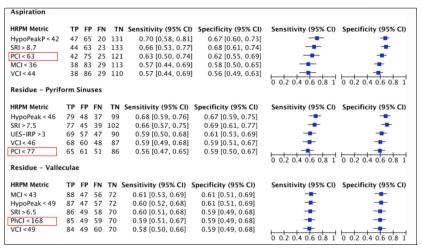
O'Rourke, Lazar, Humphries, Martin-Harris 2017 Neurogastroenterology & Motility

The Relationship Between PhCI & Findings on Videofluoroscopy

- 47 records from 25 females and 22 males with a mean age of 62 (range 28-86)
- Overall mean PhCI = 172.2 mmHg·s·cm (range 5.5-1050.9)

	Residue	No Residue	p-value
	Median [IQR]	Median [IQR]	
	Mean ± SD	Mean ± SD	
Thin			
Valleculae	80.4 [57.3-176.8] 102.7 ± 65.1	159 [104.2-236.4] 192.7 ± 167.6	0.013
Pyriforms	159 [111.0-224.8]	78.7 [54.5-137.4]	0.013
	97.6 ± 73.5	189.0 ± 163.4	
Nectar			
Valleculae	137.2 [85.0-184.2] 132.1 ± 62.7	183.3 [129.7-219.9] 172.2 ± 79.9	0.007
Pyriforms	87.3 [66.0-121.2] 96.1 ± 46.1	164.9 [119.8-217.7] 185.3 ± 132.6	0.052
Pudding			
Valleculae	195.8 [132.0-258.3]	118.4 [68.8-181.6]	(0.016)
	126.9 ± 82.2	195.3 ± 89.7	\searrow
Pyriforms	85.6 [62.4-196.6]	185.2 [141.5-236.5]	(0.012)
	123.3 ± 34.2	70.3 ± 12.4	

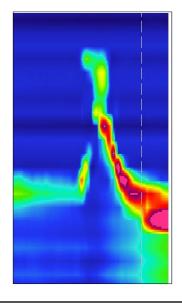
	Threshold PhCI (mmHg·s·cm)	\mathbb{R}^2	p-value
Γhin		_	
Valleculae	173.3	0.0020	< 0.0001
Pyriforms	177.9	0.0224	< 0.0001
Nectar			
Valleculae	162.0	0.0279	< 0.0001
Pyriforms	175.9	0.0466	< 0.0001
Pudding			
Valleculae	186.6	0.1023	< 0.0001
Pyriforms	185.9	0.0751	< 0.0001


Hamberis, Davidson, Zhao, Nguyen, O'Rourke Presented Am. Academy Otolaryngology 2019 Unpublished data.

2.7 mm Medtronic catheter; Manoscan software

Accuracy of High-Resolution Pharyngeal Manometry Metrics for Predicting Aspiration and Residue in Oropharyngeal Dysphagia Patients with Poor Pharyngeal Contractility

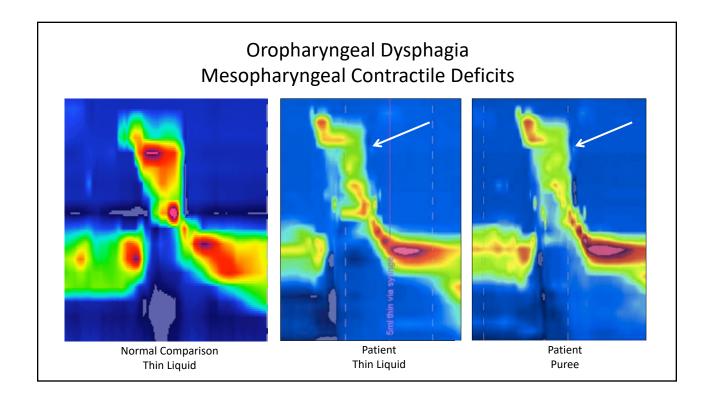
Howell Henrian G. Bayona, Nicole Pizzorni, Jan Tack, Ann Goeleven, Taher Omari & Nathalie Rommel

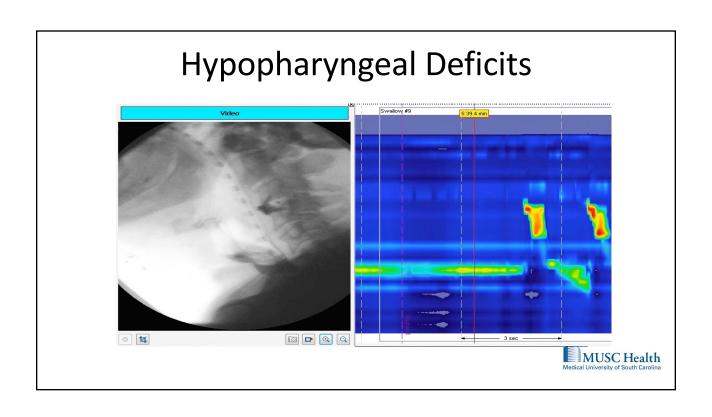


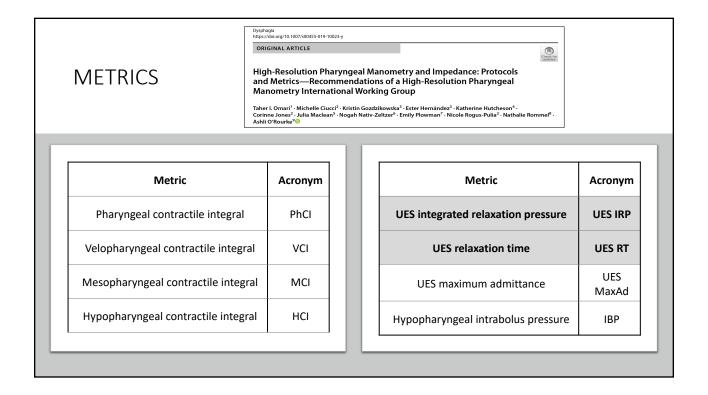


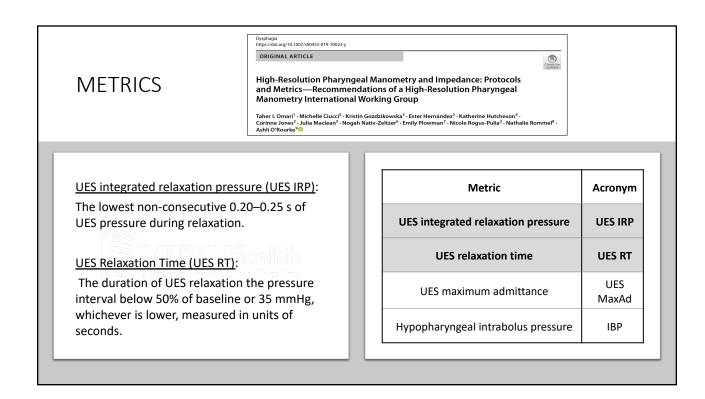
Bayona et al. Dysphagia. 2022 Feb 19. Epub ahead of print.

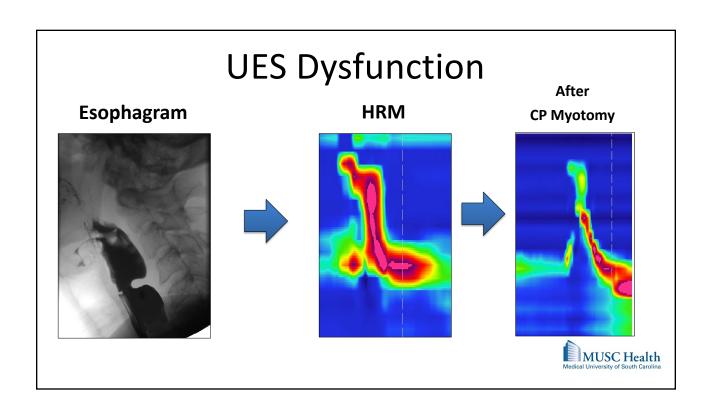
3.2 mm Unisensor catheter, MMS/Laborie Solar GI System Acquisition software, SwallowGateway Analysis Software)


VPI/MCI Deficits






C Health


Feeling of an Effortful Swallow Status Post UPPP Thin Liquid Feeling of an Effortful Swallow Status Post UPPP Puree Furee

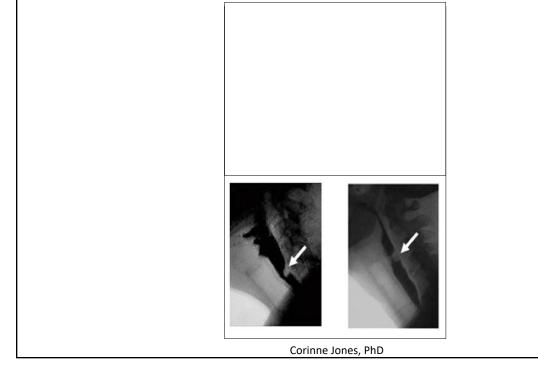
Are our interventions improving swallowing?

Head Neck. 2018 Jan;40(1):203-212. doi: 10.1002/hed.24977. Epub 2017 Oct 30.

Swallowing outcomes after cricopharyngeal myotomy: A systematic review.

Knigge MA1, Thibeault SL2.

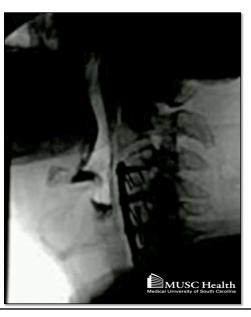
Author information

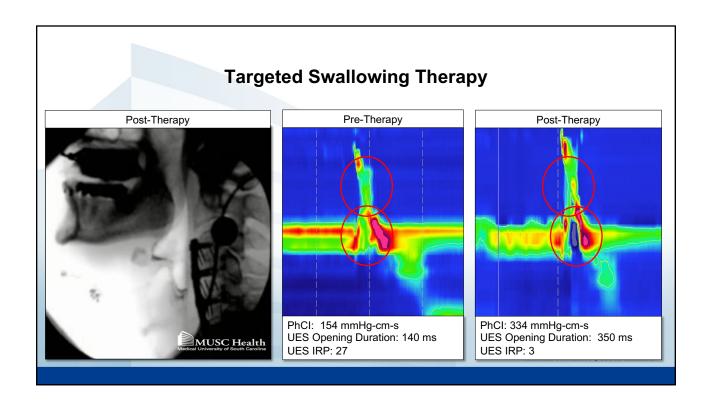

Abstract

BACKGROUND: No practice guidelines have been established for swallowing outcomes after cricopharyngeal myotomy (CPM). The purpose of this systematic review was to summarize evidence for swallowing outcomes in patients undergoing CPM to treat symptomatic cricopharyngeal dysfunction, in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) protocol.

METHODS: Swallowing outcomes examined included penetration/aspiration ratings, manometric measures, patient-rated dysphagia scales, clinician-rated dysphagia scales, diet level, and weight.

RESULTS: Three databases were queried for studies published between January 1995 and July 2015, resulting in a total of 122 full-text eligible records. Studies were screened and reviewed, culminating in 10 studies meeting inclusion criteria. Critical appraisal of study design, swallowing outcomes measures, and statistical analysis were summarized.


CONCLUSION: This systematic review revealed insufficient evidence for guiding clinical practice. Future investigations should use validated patient-rated and clinician-rated instruments <u>as well as detailed high-resolution manometry measures</u> to optimally capture postoperative swallowing outcomes.




Case Example: Patient referred for cricopharyngeal myotomy.

- Dysphagia following cervical spine fusion > 3 months prior.
- Coughing while eating and effortful swallowing.
- 15 lb. weight loss, two recent episodes of pneumonia.
- Soft diet, nectar liquids.
- We performed HRM-FEES
 - Patient had 3 previous MBSS
 - Determine safety of swallow (evaluate for airway protection)

High-Resolution Pharyngeal Manometry and Impedance: Protocols and Metrics—Recommendations of a High-Resolution Pharyngeal

METRICS

Dysphagia https://doi.org/10.1007/s00455-019-10023-y ORIGINAL ARTICLE

Manometry International Working Group

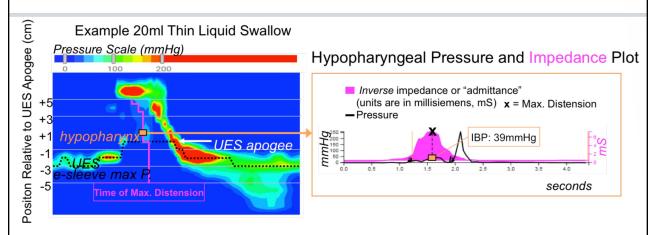
Metric	Acronym
UES integrated relaxation pressure	UES IRP
UES relaxation time	UES RT
UES maximum admittance	UES MaxAd
Hypopharyngeal intrabolus pressure	IBP

Check for

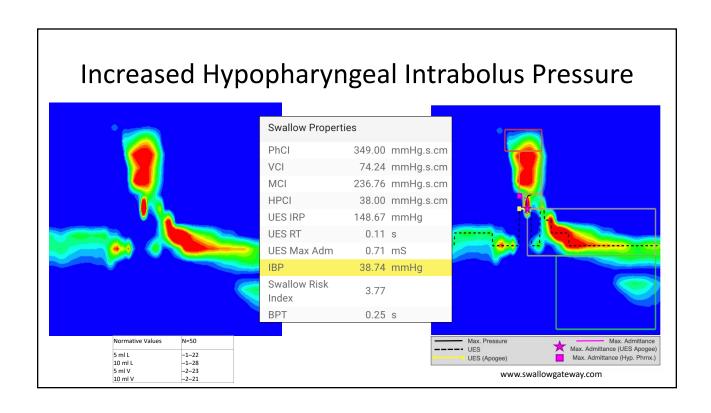
High Resolution Manometry with Impedance

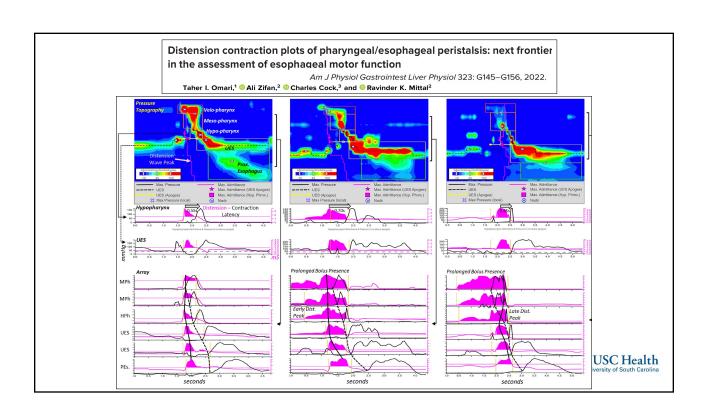
Manometry

- Measures intraluminal pressure changes caused by muscular contraction and relaxation
- · Measured in mmHg


Admittance

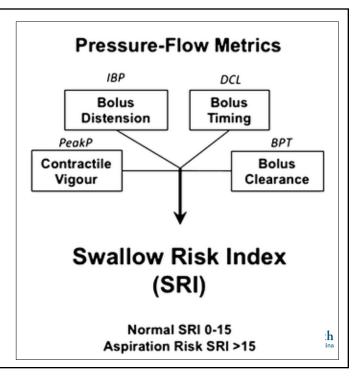
- It is the inverse of impedance and thus, how easily flow is allowed
- · Surrogate for distention
- · Measured in milliSiemens


Impedance


- Measures the resistance to electrical current flow in the GI tract
- Impedance changes due to the electric conductivity of digestive contents
- · Measured in ohms

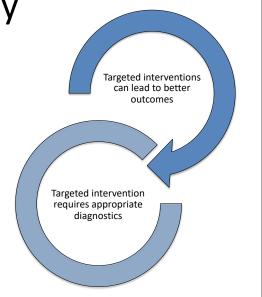
Hypopharyngeal Intrabolus Pressure

hIBP is pressure 1cm superior of UES apogee position at the time of maximum hypopharyngeal distension deduced from impedance topography.


Swallow Risk Index

 $SRI=(FI \times PNadImp)/(PeakP \times (TNadImp-PeakP+1)) \times 100$

Higher SRI = greater aspiration risk


Cock, C., Omari, T. Diagnosis of Swallowing Disorders: How We Interpret Pharyngeal Manometry. *Curr Gastroenterol Rep* **19**, 11 (2017).

Omari TI,, et al. A method to objectively assess swallow function in adults with suspected aspiration. Gastroenterology. 2011;140:1454–63.

Summary

- HRPM can be a helpful adjuvant tool in the evaluation of dysphagia.
- Currently not a stand alone assessment.
 - Risk assessments
 - Impedance measurements give promising information
- Has diagnostic and therapeutic benefits.

