

Therapeutic Applications of Pharyngeal Manometry

Kate W. Davidson, MS, CCC-SLP

Research Associate, Department of Otolaryngology Head & Neck Surgery
Speech-Language Pathologist, Evelyn Trammell Institute for Voice & Swallowing
Affiliate Clinical Faculty, College of Health Professions

Behavioral Retraining Approaches

"When behavioral re-training approaches are appropriate for a specific patient (and his/her pathophysiology) AND they are implemented using principles of exercise physiology, motor learning, and neuroplasticity, patient outcomes will very likely be positive"

"Not only the specific exercises, but more importantly **the**way these exercises and programs are implemented is key to the
success of the patients."

~Georgia Malandraki, SIG 13 List Serve

MUSC

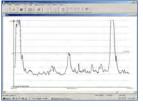
Principles of Activity-dependent Neuroplasticity

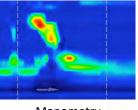
Table 1. Principles of experience-dependent plasticity.

Principle	Description				
Use It or Lose It	Failure to drive specific brain functions can lead to functional degradation.				
2. Use It and Improve It	Training that drives a specific brain function can lead to an enhancement of that function.				
3. Specificity	The nature of the training experience dictates the nature of the plasticity.				
4. Repetition Matters	Induction of plasticity requires sufficient repetition.				
5. Intensity Matters	Induction of plasticity requires sufficient training intensity.				
6. Time Matters	Different forms of plasticity occur at different times during training.				
7. Salience Matters	The training experience must be sufficiently salient to induce plasticity.				
8. Age Matters	Training-induced plasticity occurs more readily in younger brains.				
9. Transference	Plasticity in response to one training experience can enhance the acquisition of similar behaviors				
10. Interference	Plasticity in response to one experience can interfere with the acquisition of other behaviors.				

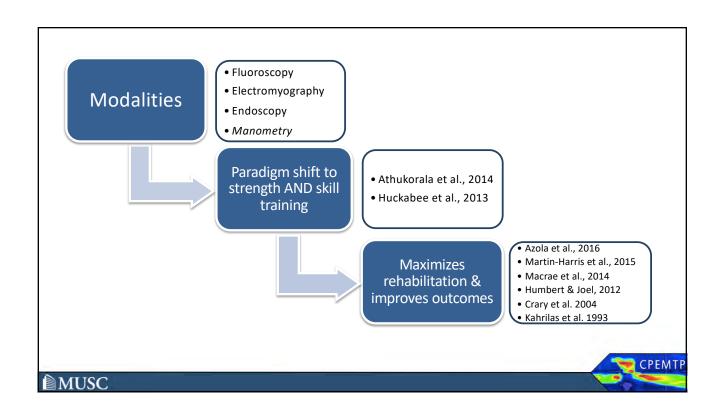
MUSC

Kleim & Jones, 2008




Specificity & Biofeedback

- Swallowing produces limited external movement patterns and intrinsic feedback systems are likely impaired in the presence of dysphagia. (Huckabee & Macrae, 2014)
- Improved performance is heavily influenced by the presence of guidance and feedback. (Salomi, Schmidt, & Walter, 1984)



Endoscopy

Electromyography

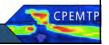
Manometry

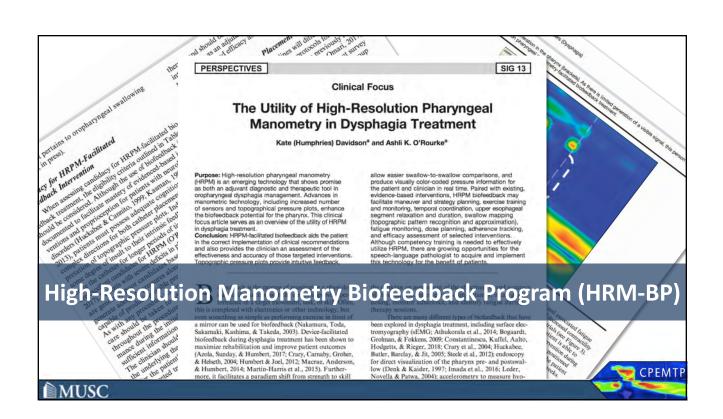
Utility of Biofeedback

- · Adjunct tool for proprioceptive training
 - Not a stand-alone therapy
 - Utilize with traditional and/or novel therapies
- Demonstrate and train targeted interventions
- Monitors adherence and progress
- Provides quantitative, objective outcome data
- Evaluates efficacy of interventions

MUSC

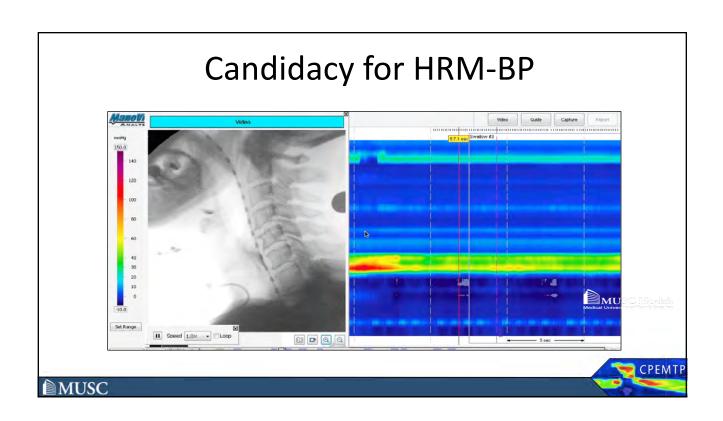
Utility of Biofeedback


- Education and shaping of desired response
 - Educate the patient regarding the nature of their swallowing disorder
 - Dependent on cognitive ability
- Targeted intervention training
 - Demonstrate and train targeted treatment
 - Goal is patient understanding of exercises and strategies



HRM Facilitated Biofeedback

- Precedence
 - Anorectal biofeedback for fecal incontinence
 - Norton et al., 2012, Markland et al., Mazor et al., 2016
 - Volitional control of UES pressure (n=10)
 - Nativ-Zeltzer et al., 2019
 - LES in reflux patient (n=1)
 - Gordon et al., 1984
- Increased number of sensors enhance the biofeedback potential for pharynx



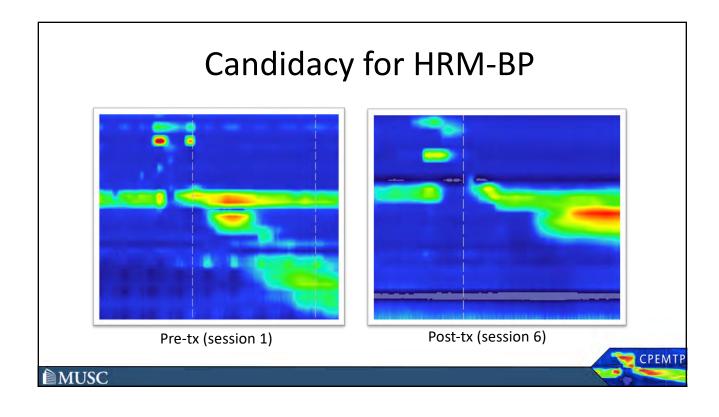

Candidacy for HRM-BP

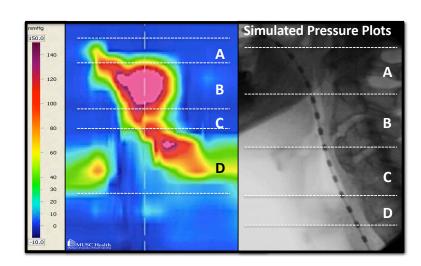
Table 1. Eligibility criteria for high-resolution pharyngeal manometry–facilitated biofeedback therapy.

- 1. Adequate cognition for following complex directions
- 2. No anatomical variants that would prohibit catheter placement
- 3. No recent facial, nasal, pharyngeal, laryngeal or esophageal trauma or surgery
- 4. No known nasal, pharyngeal, or esophageal obstruction
- Ability to tolerate catheter placement for extended periods (≥ 15 min)
- 6. Observable degree of pharyngeal contractility

HRM-BP Protocol

- 1. Topical vs spray anesthesia
- 2. Catheter placement
 - Physician assistance?
 - Visualization?
 - 2.7mm
 - Chin tuck, water swallows
- 3. Acclimation period
- 4. Calibration
- 5. Baseline swallows
- 6. Targeted Treatment

HRM-BP Protocol


Module	Goal Description	Criteria Level (%)
	Identification of target PhCI during effortful swallow (based on age criteria) (Goal 1) and swallow event (Goal 2) relative to baseline PhCI (non-effortful swallows) using simulated topographic pressure plots.	80
Identification	Identification of target PhCI during effortful swallow (Goal 3) and swallow event (Goal 4) relative to baseline PhCI using visually guided feedback during self-swallowing.	80
Acquisition	Effortful swallow at target PhCI using visually guided feedback for thin (Goal 5), nectar-thickened (Goal 6), and pudding (Goal 7) during swallowing.	80
Mastery	Effortful swallow at target PhCI without visually guided feedback for thin (Goal 8), nectar-thickened (Goal 9), and pudding (Goal 10) during swallowing.	90

MUSC

Adapted: Martin-Harris et al., 2015

Identification - Simulated

A) Velopharynx Region

- Soft palate
- Superior pharyngeal constrictors

B) Mesopharyngeal

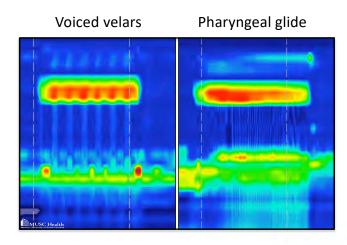
- Tongue base
- Inferior pharyngeal constrictors
- Middle pharyngeal constrictors

C) Hypopharynx Region

• Inferior pharyngeal constrictors

D) UES Region

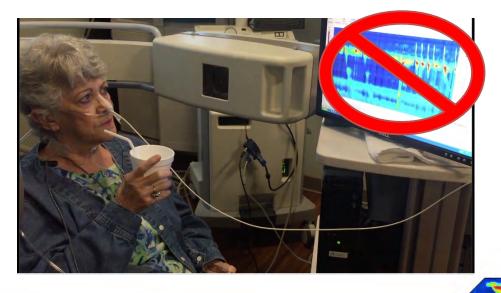
• Pharyngoesophageal segment



Identification – Self-generated Pressures

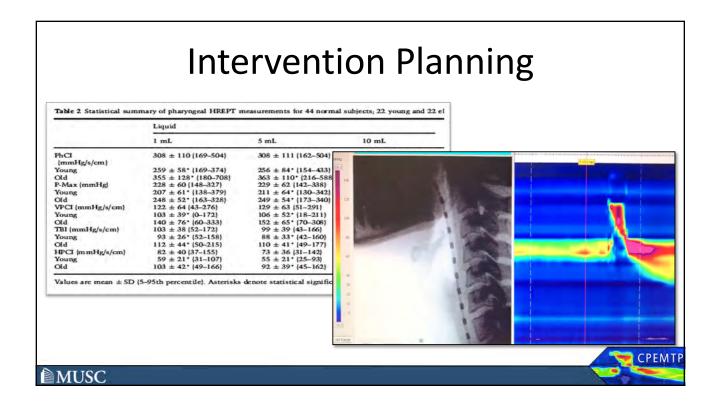
Train relationship between observable movement and changes in pressure:

- palpate catheter -> voiced velars -> pharyngeal glide -> swallow
- Goal for observation of the signal to become associated with proprioceptive biofeedback of movement.


MUSC

Acquisition – Visually Guided

Mastery – No visual feedback



MUSC

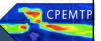
HRM-BP Applications

- Maneuver/strategy planning & training
- Exercise training & monitoring
- Temporal coordination
- PES relaxation & duration
- Swallow mapping (pattern recognition)
- Dosing & adherence

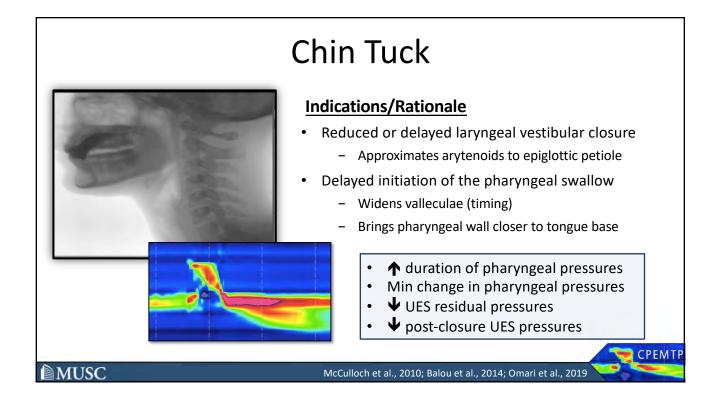
Targeted Intervention

- Patient-specific:
 - underlying impairment,
 - · medical diagnosis,
 - cognitive status,
 - · medical status,
 - patient/caregiver preferences
- Evidence-based (literature, expertise, preference)
- Based on observations of *pathophysiology* during instrumental assessment

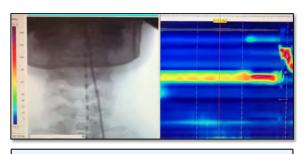
Targeted Intervention


- Compensation: improve safety and efficiency of swallowing without directly targeting swallowing physiology; "adapt" to impairment → maneuvers & strategies
- Retraining: improve safety and efficiency of swallowing by directly targeting swallowing physiology; "repair" impairment → strength & skill training

MUSC



Maneuvers & Strategies


- Omari et al., 2019 (working group lit review)
- O'Rourke et al., 2014 (effect on esophageal physiology, n = 10, normals)
- Balou et al., 2014 (head rotation, chin tuck, n = 10, normals)
- Hammer et al., 2014 (tongue hold maneuver, n = 6, normals)
- Hoffman et al., 2012 (Mendelsohn, effortful, n = 14, normals)
- Doeltgen et al., 2011 (tongue hold maneuver, n = 68, normals)
- Takasaki et al., 2011 (effortful swallow, n = 18, normals)
- Takasaki et al., 2010 (head rotation, n = 18, normals)
- McCulloch et al., 2010 (chin tuck, head turn, n = 7, normals)
- Umeki et al., 2009 (tongue hold maneuver, n = 33, normals)

Head Turn

- pharyngeal pressures (min)
- Under duration duration
- UES residual pressures
- duration of UES relaxation
- UES resting pressures
- ? Impact of catheter placement

- Unilateral pharyngeal bulging/paresis
 - Eliminates damaged side from bolus path
 - Decreases loss of cavity pressure
- Decrease PES opening
 - Pulls cricoid away from posterior pharyngeal wall
- Unilateral laryngeal dysfunction
 - Extrinsic pressure to thyroid cartilage, increases adduction

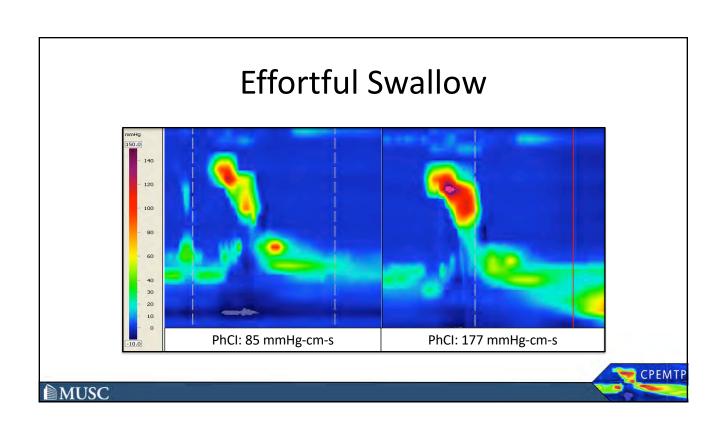
MUSC

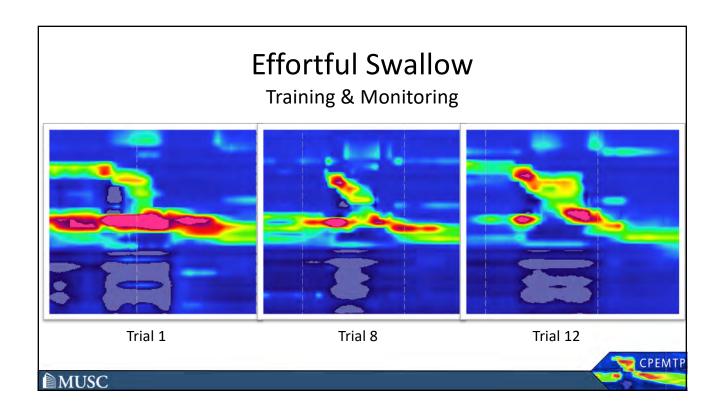
McCulloch et al., 2010; Takasaki et al., 2010; Balou et al., 2014 Omari et al. 2019

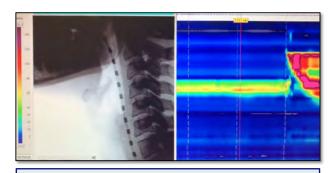
Head Turn I bulging/paresis ed side from bolus cavity pressure ng from posterior dysfunction to thyroid cartilage, on CPEMTP MUSC

Effortful Swallow

- tongue base pressure (? increased hyoid)
- **\(\ \ \ \ \ \ velopharyngeal pressure**
- pre-opening UES pressure (less resistance)
- post-closure UES pressure (prevents reflux)
- ↑ UES Nadir relaxation pressure
 - ↑ UES relaxation duration

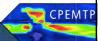

Indications/Rationale

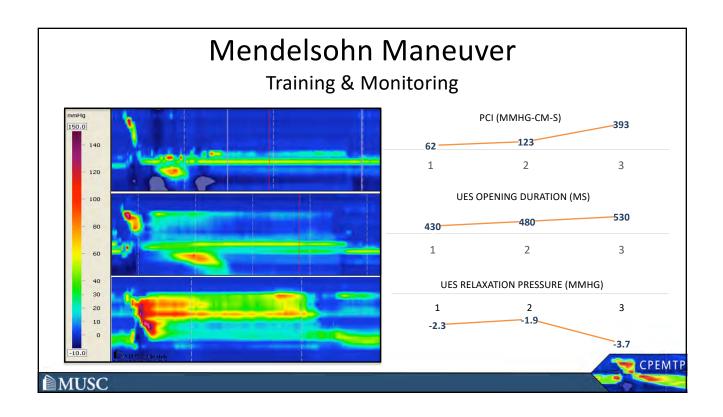

- Reduced tongue base retraction
 - Shields laryngeal inlet
- Reduced pharyngeal stripping
- Decreased pharyngeal contraction
 - Effort increase posterior tongue base and pharyngeal movement (Pouderour & Kahrilas, 1995)

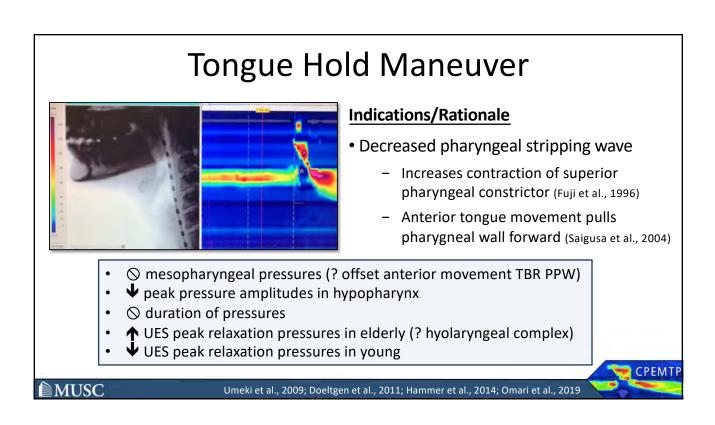

MUSC

Takasaki et al., 2011; Hoffman et al., 2012; Omari et al., 2019

Mendelsohn Maneuver

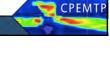

- † tongue base pressure
- pre-opening UES pressure (less resistance)
- ↑ post-closure UES pressure (prevents reflux)
- The state of the s
- ◆ ↑ UES relaxation duration

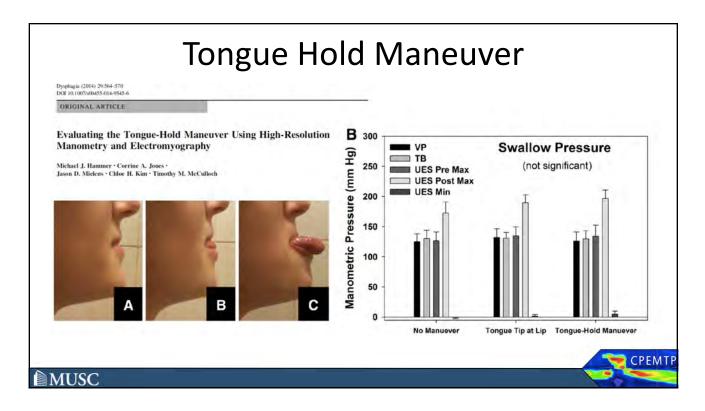

Indications/Rationale

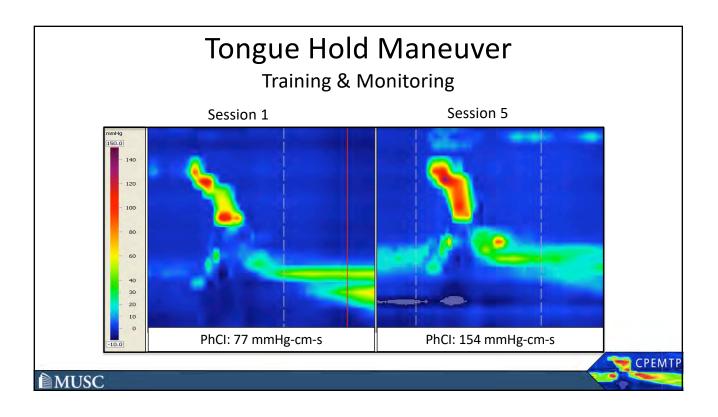

- Reduced hyolaryngeal motion
- Reduced laryngeal vestibular closure
- Reduced PES Opening
 - Facilitates and sustains laryngeal closure and PES opening (Cook et al., 1989; Jacob et al., 1989)
 - Facilitates and sustains contraction of oropharyngeal muscles (Kahrilas et al., 1991)

MUSC

Hoffman et al., 2012




Main Effect Assessed	Metric Class (↑↓ indicate direction of effect)									
	Pharyngeal	Hypopharyngeal	Upper Esophageal Sphincter							
(Outcome Topic)	Lumen Occlusive Pressure	Intrabolus Pressure	Pre- Deglutitive Pressure	Relaxation Pressure	Opening Admittance	Post- Deglutitive Pressure				
Bolus Volume (B)	↑ with Vol.	↑ with Vol.		↑ with Vol.	↑ with Vol.	↑ with Vol.				
Pen-Aspiration on VF (F)	↓ with Asp.	↑ with Asp.		↑ with Asp.	↓ with Asp.					
Control vs. Patients (E)	↓ in Pat.	↑ in Pat.	↓ in Pat.	↑ in Pat.	↓ in Pat.	↓ in Pat.				
Bolus Consistency (B)	↑ with Cons.	↑ with Cons.		↑ with Cons.						
Ageing (D)	↑ with Age		↓ with Age	↑ with Age	↓ with Age	↑ with Age				
Clinical Symptom Scores (G)	↓ with Sx.	↑ with Sx	↓ with Sx	↑ with Sx	↓ with Sx					
Effortful Swallow (I)	↑ with ES			4		↑ with ES				
Chin tuck (C)						↓ with Tuck				
Ipsilateral Head Turn (C)	↑ with Turn		↓ with Turn			↑ with Turn				
Mendelsohn Swallow (I)	↑ with MS			7		↑ with MS				
Opioid Agonist (J)	↓ with Opi.	↑ with Opi.		↑ with Opi.	7					
Neuro or muscular stimulation (K)	↑ with Stim.				↑ with Stim.					
Artificial UES restriction (C)		↑ with Restrict		† with Restrict						


Cells highlighted grey when ≥3 studies report the effect. Abbreviations: penetration (pen), videofluoroscopy (VF), upper esophageal sphincter (UES), volume (vol), aspiration (asp), patient (pat), consistency (cons), symptoms (sx), effortful swallow (ES), Mendelsohn swallow (MS) stimulation (stim), opioid (opi).

HRPM International Working Group, Protocols & Metrics, Omari et al., 2019

Maneuvers - Summary

Chin Tuck

- Duration pharyngeal pressure 1
- UES residual/closing pressure ‡

Head Turn

- Pharyngeal driving pressure ?
- UES resting/residual pressure \$\ddot\$
- UES opening duration 1

Effortful

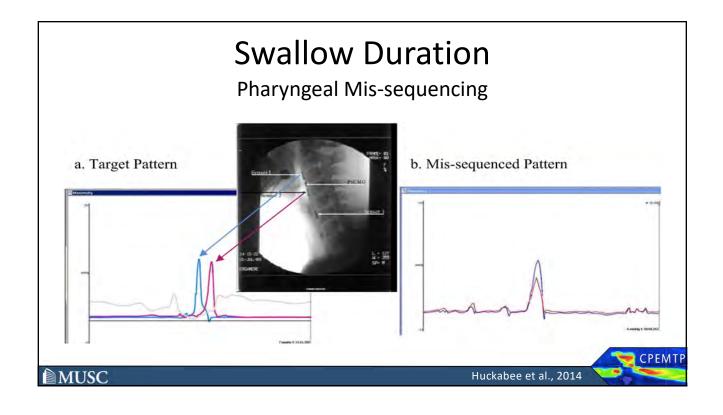
- Pharyngeal driving pressure 1
- UES opening duration 1
- UES closing pressure 1

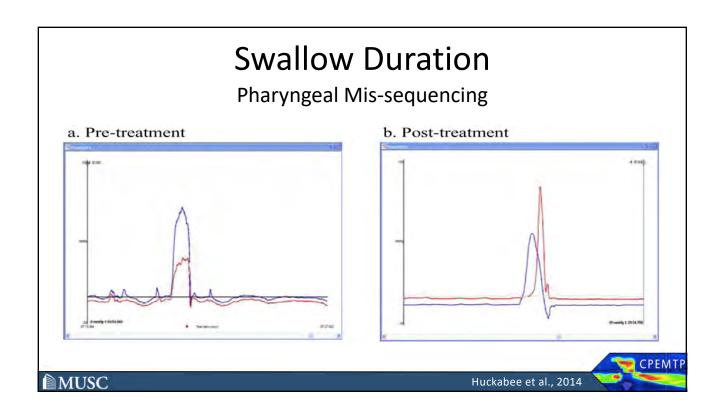
Mendelsohn

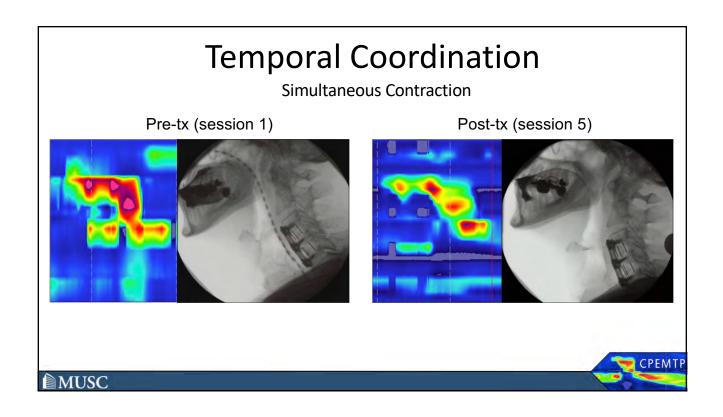
- Pharyngeal driving pressure 1
- UES opening duration ^{1*}
- UES closing pressure ?

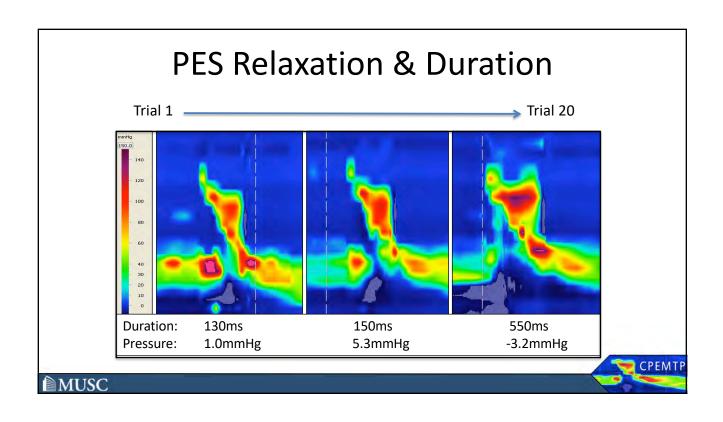
Tongue Hold

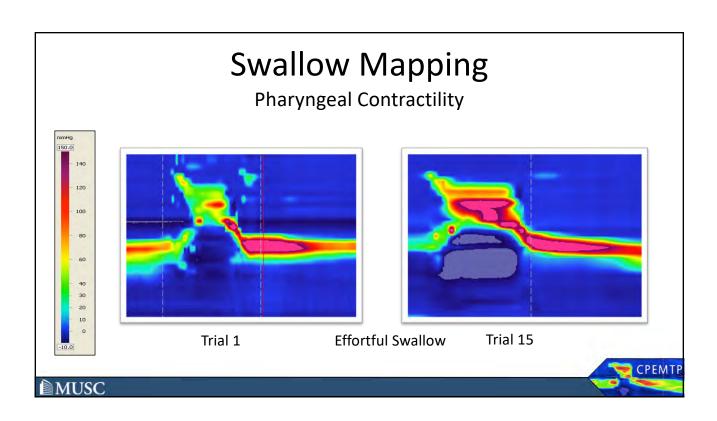
Pharyngeal driving pressure ◊




Temporal Coordination

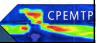

 After a minimum of one-week intensive rehabilitation (n=16, Huckabee et al., 2014)


	Normative data (95% confidence interval)	Pre-treatment baseline averages (95% confidence interval)	Post-treatment averages (95% confidence interval)		
Temporal data					
Peak 1-Peak 2	239 ms (215–263 ms)	15 ms (- 2 to 33 ms)	137 ms (86–187 ms)		
Swallowing duration	479 ms (409–549 ms)	620 ms (469–770 ms)	536 ms (454–617 ms)		
Pressure / Amp	olitude data				
Proximal pharynx	114.7 mm Hg (104.1–125.4 mm Hg)	46.4 mm Hg (25.1–67.6 mm Hg)	46.6 mm Hg (31.1–62.1 mm Hg)		
Distal pharynx	114.9 mm Hg (104.9–124.9 mm Hg)	39.7 mm Hg (23.8–55.6 mm Hg)	47.1 mm Hg (29.7–64.5 mm Hg)		
UES nadir pressure	- 9.7 mm Hg (- 11.0 to - 8.5 mm Hg)	0.2 mm Hg (- 7.0 to 7.5 mm Hg)	- 3.5 mm Hg (- 7.9 to 0.9 mm Hg)		



"Swallow Mapping"

MUSC


Principles of Activity-dependent Neuroplasticity

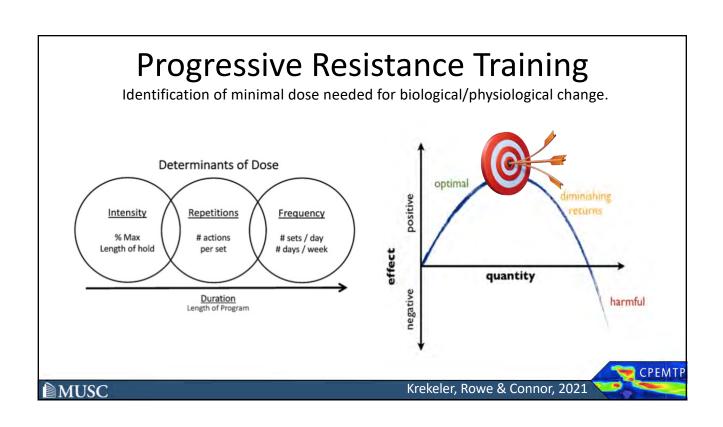
Unexplored **BUT** emerging exploration of influences on swallowing exercises

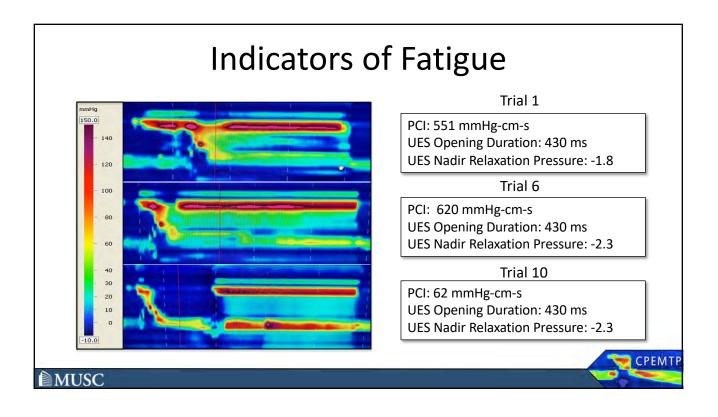
Repetition Time Intensity

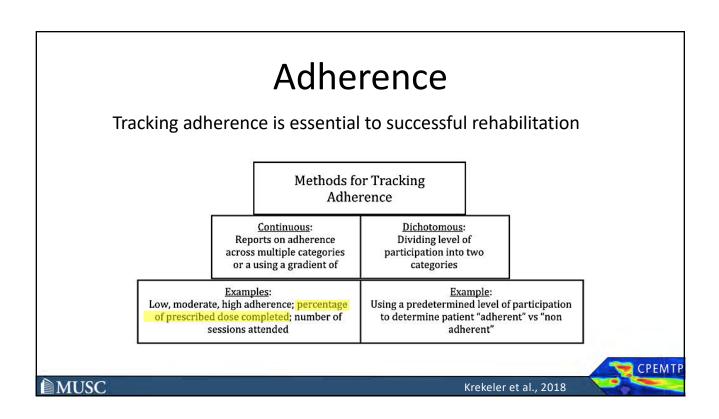
How Much? How Often? How Intense?

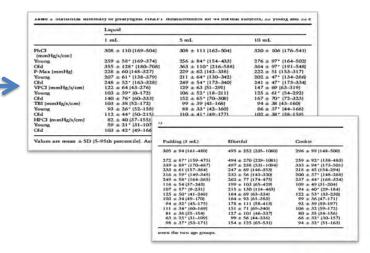
Evidence Behind Current Clinical Practice

"While exercise techniques and maneuvers are available to the dysphagia clinician, the optimal dose (i.e. number of sets and repetitions over a set amount of time) has not been determined."


Burkhead et al (2007), p. 258

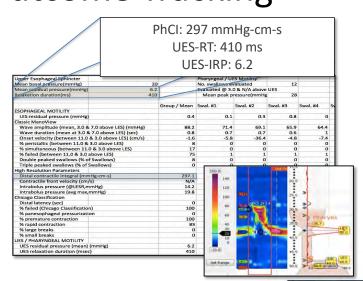

"The field is still unclear on how much, how often, and how intense the exercises should be. An expert panel at the 2011 ASHA conference clearly stated, 'We don't know!'"


Langmore & Pisegna (2015), p. 224



Reporting/Outcome Tracking

- Normative data
 - Measurable goals
 - Nativ-Zeltzer et al., 2016
- Tracking progress
 - Data of interest
 - Pressure (PhCI, UES-IRP)
 - Duration (UES-RT)
 - Ongoing assessment
 - Efficacy



MUSC

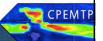
Reporting/Outcome Tracking

- Normative data
 - Measurable goals
 - Nativ-Zeltzer et al., 2016
- Tracking progress
 - Data of interest
 - Pressure (PhCI, UES-IRP)
 - Duration (UES-RT)
 - Ongoing assessment
 - Efficacy

Catheter Placement										1	4				
Anesthesia: NO YES Nare: LEFT RIGHT Positioning: Head Turn (Visualization: Fluoroscop	RIGHT	LEFT)			Jp □Oth	ert						ledica	I Uni	JSC versity	
Baseline Swallows (indica	ate swallo	w #/tim	e)								O	T Sou	tn Ca	rolina	
Baseline Swallo			1		2	3		4	5						
☐ Saliva ☐ Ice Chips ☐ 5 Bolus Trial:	mL Thin			-											
DOIGS TTIBL.								Exerc	ise/Strategy	Fatigue Onset (Trial)	Fatigue Onset (Metric)		Recovery Time		Recovery Target (Metric
Targeted Intervention															
Biofeedback: Patient view	Clinic	ian view						-					-		
Exercise/Strategy	Trials	Bolus	% Acc.	VPCI	MPCI	HPCI	PhCI								
Marker:									_			-	_		
Marker:								HRPM Fir	ndings						
Marker				-				-							
Marker									Baseline 1	Baseline 2	Baseline 3	Basel	ine 4	Baseline	5 Average
	_		_		_		_	VPCI							
Dosing & Fatigue								MPCI	-	1		-			
Fatigue Marker: VPCI					11/20 120			PhCI				1	_		
Fatigue Marker:	IMPCI.	HPCI L	Phot Li	ES-KI L	TOE2-IKP	TIN.		UES-RT							
								UES-IRP							
								PTT							
								Cassina No	ites:						
								Session No	ites:						
								_							

The Application of High-Resolution Pharyngeal Manometry for Biofeedback in Dysphagia Therapy

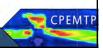
Humphries K, Blair J, O'Rourke A DRS Poster Abstract # 2845274 March 2018


• Aim:

 Identify changes in pharyngeal pressures and quality of life parameters in patients undergoing HRPM biofeedback dysphagia therapy.

Hypothesis:

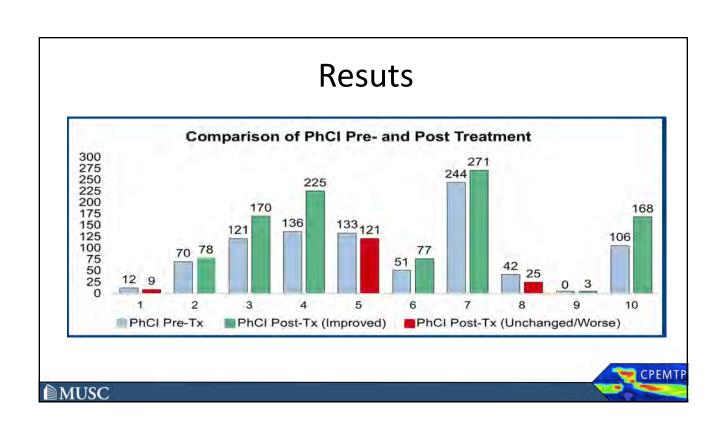
 Use of HRPM for biofeedback therapy will improve pharyngeal contractility, improve QOL and improve pharyngeal swallowing physiology.



Methods

- 10 patients underwent a pilot program of HRPM biofeedback dysphagia therapy in addition to a daily home therapy program.
- Pre- and post-treatment MBSS were obtained and compared using MBSImP and PAS scores.
- Differences in pharyngeal (PhCI), velopharyngeal (VPCI), mesopharyngeal (MPCI), and hypopharyngeal (HPCI) contractile integrals were evaluated.
- Pre- and post-treatment FOIS, Eating Assessment Tool (EAT-10) and Dysphagia Handicap Index (DHI) were compared

MUSC



Demographics

	Table 1. Subject Demographics								
Subject	Sex	Age	Race	Diagnosis	Sessions				
1	F	74	White	Neurologic NOS	5				
2	М	66	White	SCCa BOT	4				
3	М	46	White	Parkinson's	5				
4	М	71	White	ACDF	4				
5	M	64	White	Parkinson's	3				
6	М	68	White	ACDF	3				
7	М	58	White	CVA	4				
8	М	68	White	SCCa BOT (fibrosis)	10				
9	М	54	White	Muscular Dystrophy	4				
10	М	61	Black	CVA	5				

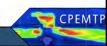
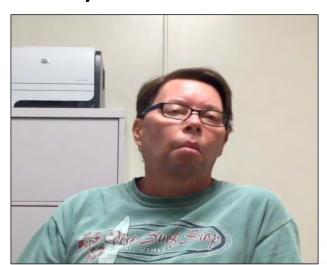
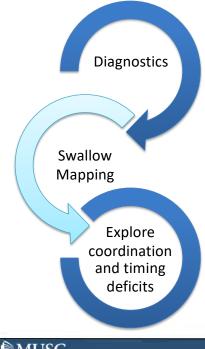


Table 2. C	Change in Q	OL Scores F	Pre- to Post	Treatment		
Subject	EAT-10	DHI-P	DHI-F	DHI-E	DHI -T	FOIS
1	-1	- 2	0	0	- 2	-1
2	- 9	- 10	- 2	- 8	- 20	0
3	- 11	- 10	- 6	- 6	- 22	-1
4	- 5	- 8	- 4	0	- 12	-1
5	- 5	- 4	-2	- 4	- 10	-4
6	- 8	- 4	-4	0	- 8	- 3
8	-1	- 8	-4	- 8	- 20	0
9	- 1	- 2	0	- 8	- 10	+1
10	- 5	- 4	- 8	+ 2	- 10	0
Mean	- 5	- 6	- 3	- 4	- 13	- 0.9
Missing Pr	e-Tx scores fo	r subject 7		- 1c	nproved	= Worse

Results

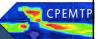

MBSImP Component*	Pre-Tx Impaired (n = 10)	Post-Tx Improved (n = pre-tx imp)			
1-Lip closure**	1 (10%)	1 (100%)			
2-Bolus hold	7 (70%)	1 (14%)			
4-Bolus transport/lingual motion	2 (20%)	1 (50%)			
5-Oral residue**	10 (100%)	6 (60%)			
6-Initiation pharyngeal swallow	10 (100%)	3 (30%)			
7-Soft palate elevation	3 (30%)	1 (33%)			
8-Laryngeal elevation	9 (90%)	4 (44%)			
9-Anterior hyoid excursion	10 (100%)	2 (20%)			
10-Epiglottic movement	9 (90%)	4 (44%)			
11-Laryngeal vestibular closure	10 (100%)	6 (60%)			
12-Pharyngeal stripping wave	8 (80%)	2 (25%)			
14-PES opening	10 (100%)	3 (30%)			
15-Tongue base retraction**	10 (100%)	4 (40%)			
16-Pharyngeal residue**	10 (100%)	5 (50%)			
Penetration Aspiration Scale**	9 (90%)	6 (67%)			


MUSC

Summary

- Seven of ten patients (70%) showed improvement in HPRM parameters
- Average increase of
 - 87.1 mmHg-cm-s in PhCl
 - 37.1 in VPCI
 - 45.1 in MCI
 - 7.5 in HPI
- − EAT-10 scores 25.7 \rightarrow 21.6
- − DHI total scores $64.2 \rightarrow 57.1$
- No adverse events.

Benefits of HRM-BP


- Train targeted interventions
- Education and shaping of desired response
- Establish efficacy of interventions and compensatory strategies
- Monitor adherence and progress
- Provide quantitative, objective outcome data

MUSC

References

- Balou, M., McCullough, G. H., Aduli, F., Brown, D., Stack Jr, B. C., Snoddy, P., & Guidry, T. (2014). Manometric measures of head rotation and chin tuck in healthy participants. Dysphagia, 29(1), 25-32.
- Doeltgen, S. H., Macrae, P., & Huckabee, M. L. (2011). Pharyngeal pressure generation during tongue-hold swallows across age groups. American Journal of Speech-Language Pathology, 20(2), 124-130.
- Fujiu M, Logemann JA. Effect of a tongue-holding maneuver on posterior pharyngeal wallmovement during deglutition. Am J Speech Lang Pathol. 1996; 5:23-30.
- Gliner, J. A., Morgan, G. A., & Leech, N. L. (2011). Research methods in applied settings: An integrated approach to design and analysis. Routledge.
- Hammer, M. J., Jones, C. A., Mielens, J. D., Kim, C. H., & McCulloch, T. M. (2014). Evaluating the tongue-hold maneuver using highresolution manometry and electromyography. Dysphagia, 29(5), 564-570.
- Hoffman, M. R., Mielens, J. D., Ciucci, M. R., Jones, C. A., Jiang, J. J., & McCulloch, T. M. (2012). High-resolution manometry of pharyngeal swallow pressure events associated with effortful swallow and the Mendelsohn maneuver. Dysphagia, 27(3), 418-426.
- Hoffman, M. R., Jones, C. A., Geng, Z., Abelhalim, S. M., Walczak, C. C., Mitchell, A. R., ... & McCulloch, T. M. (2013). Classification of high-resolution manometry data according to videofluoroscopic parameters using pattern recognition. *Otolaryngology--Head and Neck Surgery*, 0194599813489506.
- Huckabee, M. L., Lamvik, K., & Jones, R. (2014). Pharyngeal mis-sequencing in dysphagia: characteristics, rehabilitative response, and etiological speculation. Journal of the neurological sciences, 343(1), 153-158.
- Jones, C. A., Hoffman, M. R., Geng, Z., Abdelhalim, S. M., Jiang, J. J., & McCulloch, T. M. (2014). Reliability of an automated highresolution manometry analysis program across expert users, novice users, and speech-language pathologists. Journal of Speech, Language, and Hearing Research, 57(3), 831-836.

References

- Knigge, M. A., Thibeault, S., & McCulloch, T. M. (2014). Implementation of high-resolution manometry in the clinical practice of speech language pathology. *Dysphagia*, 29(1), 2-16.
- Krekeler, B. N., Rowe, L. M., & Connor, N. P. (2021). Dose in exercise-based dysphagia therapies: A scoping review. Dysphagia, 36(1), 1-32.
- Krekeler, B. N., Broadfoot, C. K., Johnson, S., Connor, N. P., & Rogus-Pulia, N. (2018). Patient adherence to dysphagia recommendations: a systematic review. Dysphagia, 33(2), 173-184.
- Mielens, J. D., Hoffman, M. R., Ciucci, M. R., Jiang, J. J., & McCulloch, T. M. (2011). Automated analysis of pharyngeal pressure data obtained with high-resolution manometry. *Dysphagia*, 26(1), 3-12
- Nativ-Zeltzer, N., Logemann, J. A., Zecker, S. G., & Kahrilas, P. J. (2016). Pressure topography metrics for high-resolution pharyngeal-esophageal manofluorography—a normative study of younger and older adults. *Neurogastroenterology & Motility*.
- O'Rourke, A., Morgan, L. B., Coss-Adame, E., Morrison, M., Weinberger, P., & Postma, G. (2014). The effect of voluntary pharyngeal swallowing maneuvers on esophageal swallowing physiology. *Dysphagia*, 29(2), 262-268.
- Saigusa H, Yamashita K, Tanuma K, Saigusa M, Niimi S. Morphological studies for retrusive movement of the human adult tongue. Clin Anat. 2004; 17:93–8.
- Takasaki, K., Umeki, H., Kumagami, H., & Takahashi, H. (2010). Influence of head rotation on upper esophageal sphincter pressure evaluated by high-resolution manometry system. Otolaryngology--Head and Neck Surgery, 142(2), 214-217.
- Takasaki, K., Umeki, H., Hara, M., Kumagami, H., & Takahashi, H. (2011). Influence of effortful swallow on pharyngeal pressure evaluation using a high-resolution manometry. *Otolaryngology--Head and Neck Surgery*, 144(1), 16-20.
- Umeki, H., Takasaki, K., Enatsu, K., Tanaka, F., Kumagami, H., & Takahashi, H. (2009). Effects of a tongue-holding maneuver during swallowing evaluated by high-resolution manometry. *Otolaryngology--Head and Neck Surgery*, 141(1), 119-122.
- Walczak, C. C., Jones, C. A., & McCulloch, T. M. (2016). Pharyngeal Pressure and Timing During Bolus Transit. Dysphagia, 1-11.

