12th Annual Otolaryngology Literature Update Otology II

Ted R. McRackan, M.D., MSCR.

Associate Professor

Director, Skull Base Surgery Center

Director, Cochlear Impant Program

Department of Otolaryngology - Head & Neck Surgery

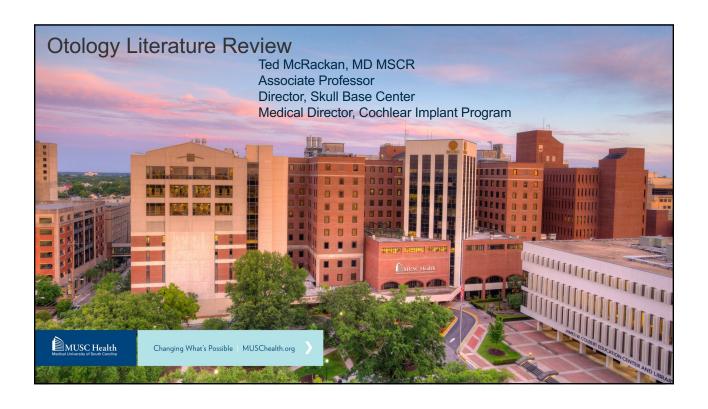
Medical University of South Carolina

mcrackan@musc.edu

Teddy McRackan, M.D., MSCR is the director of the Skull Base Center and medical director of the Cochlear Implant Program in the Department of Otolaryngology – Head and Neck Surgery. Dr. McRackan was born in Virginia and moved to Charleston to attend the College of Charleston. He received his medical degree from the Medical University of South Carolina and completed his residency at Vanderbilt University in Nashville, Tennessee. Afterward, he moved to Los Angeles for a fellowship in otology-neurotology and skull base surgery at the House Ear Clinic.

Dr. McRackan's clinical practice is focused on the comprehensive management of ear, hearing, balance, and skull base disorders in adults and children. Specific areas of interest include, but are not limited to: cochlear implantation; chronic ear surgery (cholesteatoma, chronic otitis media); acoustic neuroma and other skull base lesions; otosclerosis; facial nerve disorders and tumors; endoscopic ear surgery; implantable hearing aids; and vertigo.

Dr. McRackan has published a comprehensive neurotology textbook and has written over 100 peer-reviewed articles and book chapters. His research program has been supported by the National Institute on Deafness and Other Communication Disorders, National Center for Advancing Translational Sciences, American Cochlear Implant Alliance, and the Doris Duke Foundation.


His research focuses on a better understanding of the communication, health, social, and economic benefits of cochlear implantation in adults with hearing loss and the development of patient-centered interventions with a long-term goal of improving cochlear implant functional outcomes

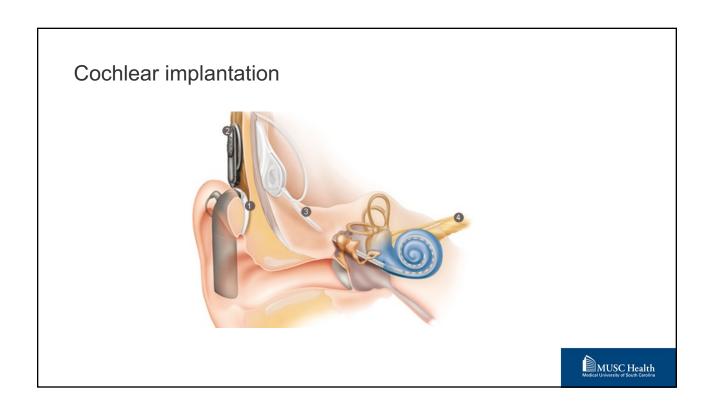
12th Annual Otolaryngology Literature Update Medical University of South Carolina

Otology II

Ted R. McRackan, M.D., MSCR.

- De Sousa KC, Manchaiah V, Moore DR, Graham MA, Swanepoel W. Effectiveness of an Over-the-Counter Self-fitting Hearing Aid Compared With an Audiologist-Fitted Hearing Aid: A Randomized Clinical Trial. JAMA Otolaryngol Head Neck Surg. 2023 Jun 1;149(6):522-530. doi: 10.1001/jamaoto.2023.0376. PMID: 37052929; PMCID: PMC10102918.
- Ismail O, Sobhy O, Assal S, Sanghera P, Begg P, Irving R. Comparing Hearing Outcomes in Irradiated and Conservatively Managed Vestibular Schwannoma. Otol Neurotol. 2022 Mar 1;43(3):e374-e381. doi: 10.1097/MAO.000000000003457. PMID: 35061638.
- Khandalavala KR, Saba ES, Kocharyan A, Daher GS, Lohse CM, Marinelli JP, Carlson ML. Hearing Preservation in Observed Sporadic Vestibular Schwannoma: A Systematic Review. Otol Neurotol. 2022 Jul 1;43(6):604-610. doi: 10.1097/MAO.000000000003520. PMID: 35261385.
- McRackan TR, Hand BN; Cochlear Implant Quality of Life Development Consortium; Velozo CA, Dubno JR. Development and Implementation of the Cochlear Implant Quality of Life (CIQOL) Functional Staging System. Laryngoscope. 2022 Nov;132 Suppl 12(Suppl 12):S1-S13. doi: 10.1002/lary.30381. Epub 2022 Sep 9. PMID: 36082873; PMCID: PMC9650765.
- Nassiri AM, Marinelli JP, Lohse CM, Carlson ML. Incidence of Cochlear Implantation Among Adult Candidates in the United States. Otol Neurotol. 2023 Jul 1;44(6):549-554. doi: 10.1097/MAO.00000000003894. Epub 2023 May 18. PMID: 37205861.
- Nieminen TA, Kivekäs I, Artama M, Nohynek H, Kujansivu J, Hovi P. Sudden Hearing Loss Following Vaccination Against COVID-19. JAMA Otolaryngol Head Neck Surg. 2023 Feb 1;149(2):133-140. doi: 10.1001/jamaoto.2022.4154. PMID: 36520464; PMCID: PMC9857204.
- Noschang Lopes da Silva M, Selaimen da Costa S, André Selaimen F, da Costa Huve F, Lang Silva A, Dias Toshiaki Koga F, Martins-Costa LL, Bernard Rosa Nery M, Zanardini M, Sperling N. Residual Cholesteatoma After Endoscopic-Assisted Canal Wall-Up Tympanomastoidectomy: A Randomized Controlled Trial. Otol Neurotol. 2022 Aug 1;43(7):803-807. doi: 10.1097/MAO.0000000000003575. PMID: 35878636.

Disclosure


- Envoy Medical (Advisory Board)
- Funding:
 - o NIH/NIDCD: R01DC020709

Topics to be discussed

- Cochlear Implantation
 - o Low utilization
 - o Improved understanding of real-world benefits
- Vestibular schwannomas (acoustic neuromas)
 - o Hearing outcomes
- Over the counter hearing aids
- · COVID vaccination and sudden hearing loss

Cochlear implantation

- · Period of drastic expansion of indications
 - o CMS expansion to match FDA indications for bilateral hearing loss
 - · Moderate to profound SNHL
 - <60% in best listening condition
 - o FDA approval for single sided deafness (not CMS)
 - However, there is very poor market penetration

Incidence of Cochlear Implantation Among Adult Candidates in the United States

*Ashley M. Nassiri, †John P. Marinelli, ‡Christine M. Lohse, and †Matthew L. Carlson

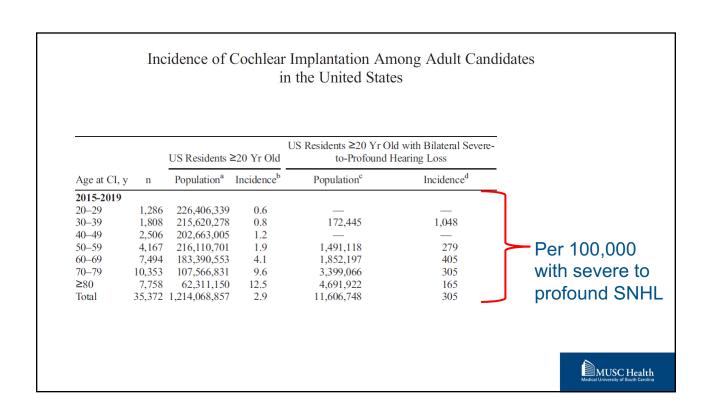
*Department of Otolaryngology-Head and Neck Surgery, University of Colorado School of Medicine, Aurora, Colorado; †Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota; and ‡Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota

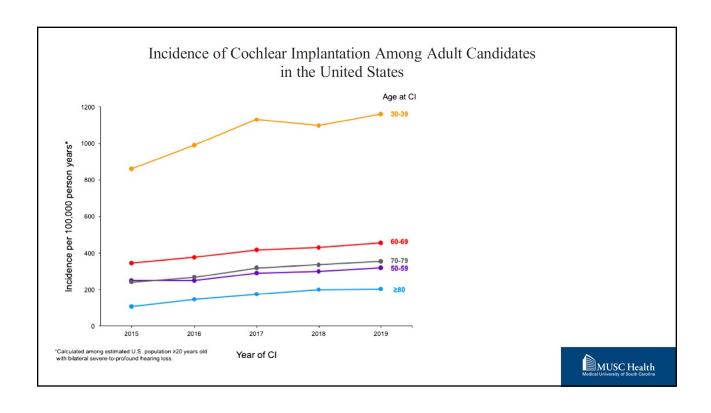
- Prior estimates of CI utilization were based on proprietary marketing models by private research firm
 - o Utilization between 6-10% in adults
- · Current study included prospectively maintained data from 2 of 3 CI manufacturers
 - · Estimated third manufacturer data based on literature
 - o Compared to National Health and Nutritional Examination Survey (NHANES) data
 - Conservative estimate (only severe to profound hearing loss)

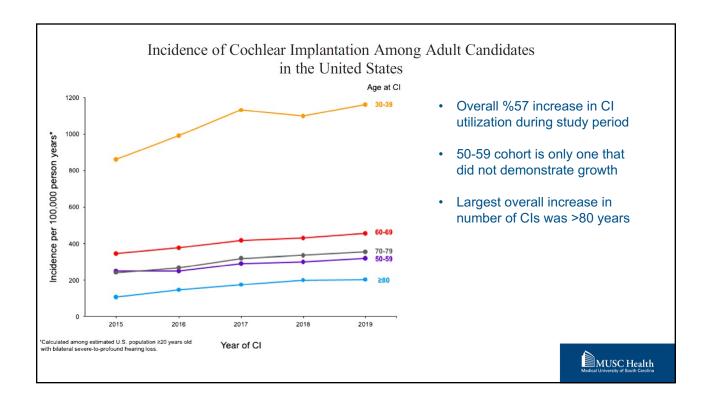
Incidence of Cochlear Implantation Among Adult Candidates in the United States

TABLE 1. Summary of patient features, including data from two of the three US cochlear implant manufacturers (Cochlear Americas and Advanced Bionics)

Feature	n (%)
Year of CI	
2015	4,598 (15)
2016	5,261 (18)
2017	6,173 (21)
2018	6,734 (22)
2019	7,300 (24)
Age at CI in years ^a	
20–29	1,093 (4)
30–39	1,537 (5)
40-49	2,130 (7)
50-59	3,542 (12)
60-69	6,370 (21)
70–79	8,800 (29)
≥80	6,594 (22)
Laterality of implant	
Unilateral or bilateral sequential	29,669 (99)
Bilateral simultaneous	397 (1)


^aMedian (interquartile range) age at CI was 70 (58–78) years.




Incidence of Cochlear Implantation Among Adult Candidates in the United States

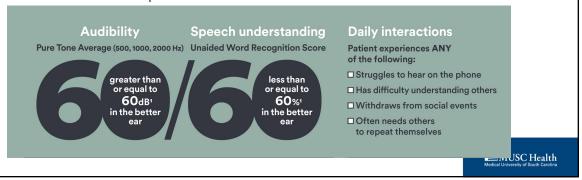
		US Residents	≥20 Yr Old	US Residents ≥20 Yr Old with Bilateral Se to-Profound Hearing Loss		
Age at CI, y	n	Population ^a	Incidence ^b	Population ^c	Incidence ^d	
2015-2019						
20-29	1,286	226,406,339	0.6	_	_	
30-39	1,808	215,620,278	0.8	172,445	1,048	
40-49	2,506	202,663,005	1.2	_	_	
50-59	4,167	216,110,701	1.9	1,491,118	279	
60-69	7,494	183,390,553	4.1	1,852,197	405	
70-79	10,353	107,566,831	9.6	3,399,066	305	
≥80	7,758	62,311,150	12.5	4,691,922	165	
Total	35,372	1,214,068,857	2.9	11,606,748	305	

Incidence of Cochlear Implantation Among Adult Candidates in the United States

*Ashley M. Nassiri, †John P. Marinelli, ‡Christine M. Lohse, and †Matthew L. Carlson

*Department of Otolaryngology-Head and Neck Surgery, University of Colorado School of Medicine, Aurora, Colorado: †Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota; and ‡Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota

- Despite substantial increases, Cls remain widely underutilized
 Particularly in the elderly population
- More work needed to expand access to CIs



Incidence of Cochlear Implantation Among Adult Candidates in the United States

*Ashley M. Nassiri, †John P. Marinelli, ‡Christine M. Lohse, and †Matthew L. Carlson

*Department of Otolaryngology-Head and Neck Surgery, University of Colorado School of Medicine, Aurora, Colorado: †Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota; and ‡Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota

- Despite substantial increases, CIs remain widely underutilized
 - o Particularly in the elderly population
- More work needed to expand access to CIs

Cochlear implant outcomes

- Cochlear implant outcomes have been traditionally measured solely using speech recognition outcomes
 - Word recognition (Example: CNC)
 - Sentence recognition (Example: AzBio)

Theodore R. McRackan, MD, MSCR ©; Brittany N. Hand, PhD, OTR/L; Cochlear Implant Quality of Life Development Consortium; Craig A. Velozo, PhD, OTR/L; Judy R. Dubno, PhD ③

- Cochlear implant outcomes have been traditionally measured solely using speech recognition outcomes
 - Word recognition (Example: CNC)

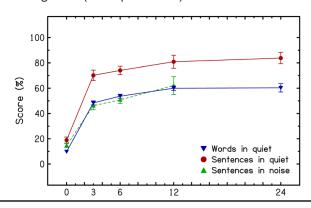
Words in quiet

o Sentence recognition (Example: AzBio)

Pre-op (SD) 12mo post-CI(SD)
12.8% (±15.8) 59.5% (±22.2)

Sentences in quiet 20.2% (±20.3) 79.6% (±23.8)

Ma, Cheng, et al. Laryngoscope. 2021


Sentences in noise 21.6% (±19.2) 57.5% (±25.1)

Development and Implementation of the Cochlear Implant Quality of Life (CIQOL) Functional Staging System

Theodore R. McRackan, MD, MSCR ©; Brittany N. Hand, PhD, OTR/L;
Cochlear Implant Quality of Life Development Consortium; Craig A. Velozo, PhD, OTR/L;
Judy R. Dubno, PhD ③

- Cochlear implant outcomes have been traditionally measured solely using speech recognition outcomes
 - Word recognition (Example: CNC)
 - o Sentence recognition (Example: AzBio)

Ma, Cheng, et al. Laryngoscope. 2021

Theodore R. McRackan, MD, MSCR ©; Brittany N. Hand, PhD, OTR/L; Cochlear Implant Quality of Life Development Consortium; Craig A. Velozo, PhD, OTR/L; Judy R. Dubno, PhD ③

 Cochlear implant outcomes have been traditionally measured solely using speech recognition outcomes

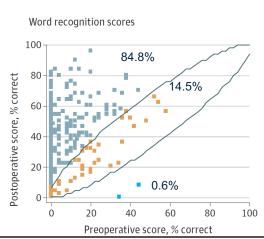
Word recognition scores

100
84.8%

14.5%

60
20
40
60
80
100

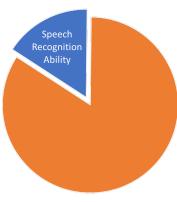
Preoperative score, % correct


Dornhoffer JR, et al. JAMA-Oto. 2021 Dunn C, et al. AM J Aud. 2020 Lundberg EMH et al. Otol Neurotol 202

Development and Implementation of the Cochlear Implant Quality of Life (CIQOL) Functional Staging System

Theodore R. McRackan, MD, MSCR ©; Brittany N. Hand, PhD, OTR/L;
Cochlear Implant Quality of Life Development Consortium; Craig A. Velozo, PhD, OTR/L;
Judy R. Dubno, PhD ③

 Cochlear implant outcomes have been traditionally measured solely using speech recognition outcomes


What does this mean regarding real-world functional ability?

Dornhoffer JR, et al. JAMA-Oto. 2021 Dunn C, et al. AM J Aud. 2020 Lundberg FMH et al. Otol Neurotol 2021

Theodore R. McRackan, MD, MSCR ©; Brittany N. Hand, PhD, OTR/L; Cochlear Implant Quality of Life Development Consortium; Craig A. Velozo, PhD, OTR/L; Judy R. Dubno, PhD ③

 Cochlear implant outcomes have been traditionally measured solely using speech recognition outcomes

- Speech recognition only accounts for 4-16% of variance in patient selfreported communication ability
- Even lower in multivariable regression models (β=0.0 (0.0-0.1))

McRackan TR, et al. Ear and Hearing. 2021 McRackan TR, et al. Laryngoscope. 2018 McRackan TR, et al. Otol Neurotol. 2018

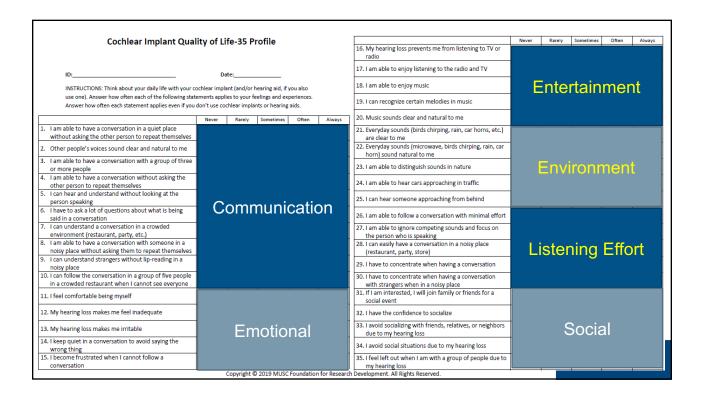
Patient-reported outcome measures (PROMs)

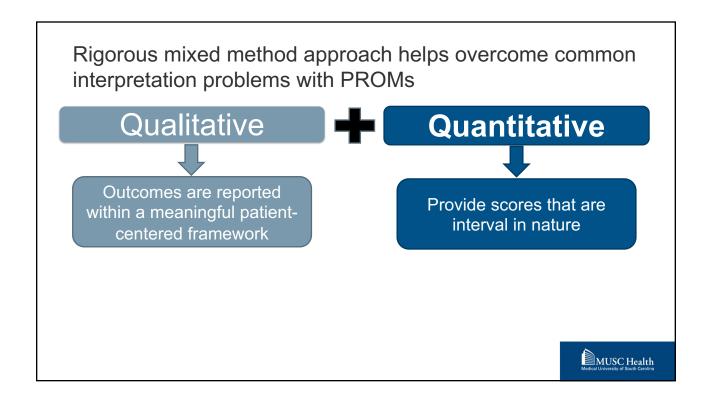
- Instruments that capture a patient's perspective about their overall health or treatment
- Direct assessment of how a disease or intervention impacts functional abilities in real-world settings

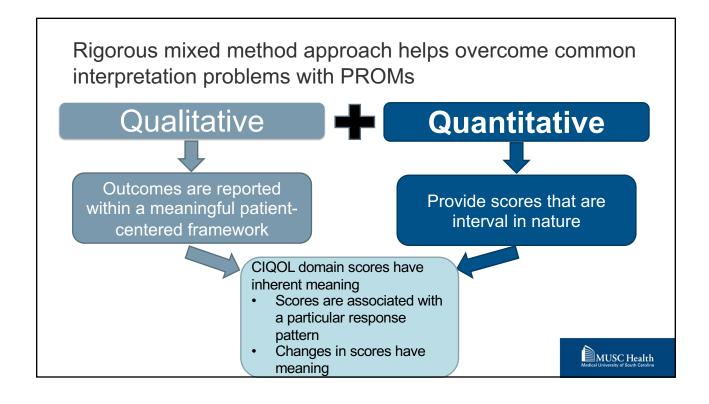
Patient-reported outcome measures (PROMs)

- · Important because:
 - o Removes clinicians' biases
 - Can efficiently measure multiple constructs
 - o Regulatory standpoint:
 - · Now required for FDA trials
 - Part of CMS Meaningful Measures Framework

Cochlear Implant QOL (CIQOL) Instruments

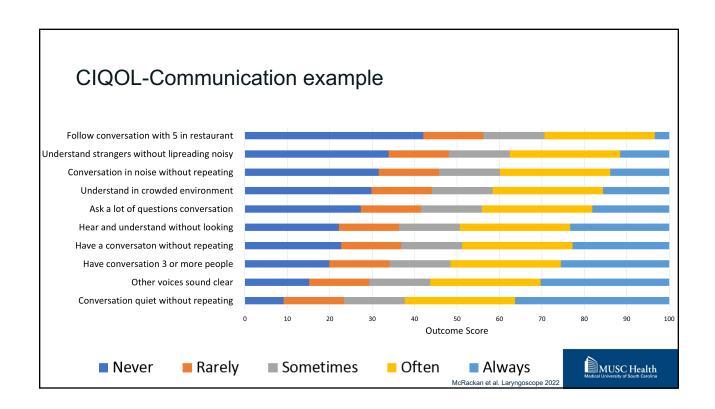

- · Developed using rigorous development standards
- No previous patient-reported outcome measure (PROM) has been validated in hearing loss or CI users that meets current standards

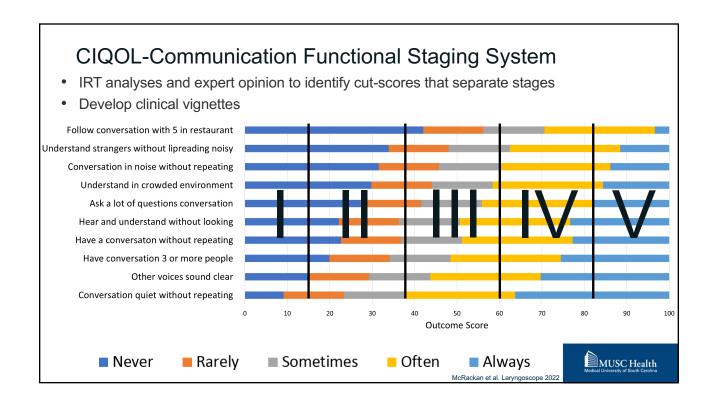


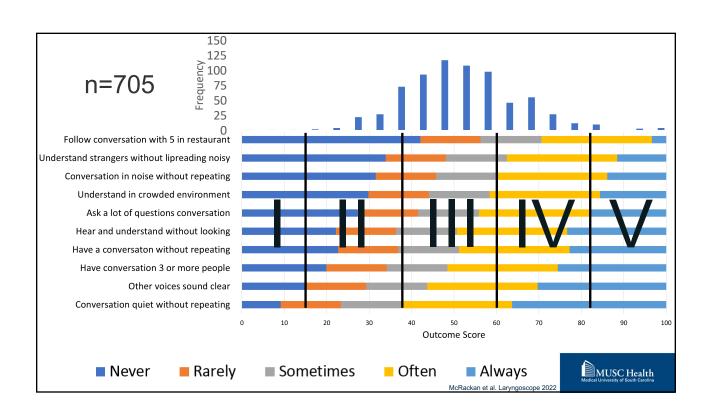

https://education.musc.edu/ciqol

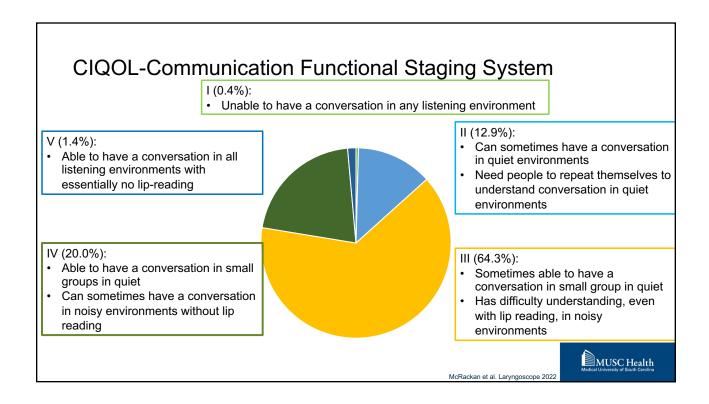
Cochlear Implant Qual	lity of Li	fo 2E D	rofilo				Never	Rarely	Sometimes	Often	Always
cocineal implant qual	iity Oi Li	1e-33 F	Toffie			16. My hearing loss prevents me from listening to TV or radio					
ID:	De	ite:				17. I am able to enjoy listening to the radio and TV					
INSTRUCTIONS: Think about your daily life with your co	-		nearing aid, if	you also		18. I am able to enjoy music					
use one). Answer how often each of the following stat Answer how often each statement applies even if you						19. I can recognize certain melodies in music					
	Never	Rarely	Sometimes	Often	Always	20. Music sounds clear and natural to me					
I am able to have a conversation in a quiet place without asking the other person to repeat themselves						21. Everyday sounds (birds chirping, rain, car horns, etc.) are clear to me					
2. Other people's voices sound clear and natural to me						22. Everyday sounds (microwave, birds chirping, rain, car horn) sound natural to me					
I am able to have a conversation with a group of three or more people						23. I am able to distinguish sounds in nature					
I am able to have a conversation without asking the other person to repeat themselves		24. I am able to hear cars approaching in traffic									
5. I can hear and understand without looking at the person speaking	25. I can hear someone approaching from behind										
I have to ask a lot of questions about what is being said in a conversation						26. I am able to follow a conversation with minimal effort					
I can understand a conversation in a crowded environment (restaurant, party, etc.)						27. I am able to ignore competing sounds and focus on the person who is speaking					
I am able to have a conversation with someone in a noisy place without asking them to repeat themselves						28. I can easily have a conversation in a noisy place (restaurant, party, store)					
I can understand strangers without lip-reading in a noisy place						29. I have to concentrate when having a conversation					
10. I can follow the conversation in a group of five people in a crowded restaurant when I cannot see everyone						30. I have to concentrate when having a conversation with strangers when in a noisy place					
11. I feel comfortable being myself						31. If I am interested, I will join family or friends for a social event					
12. My hearing loss makes me feel inadequate						32. I have the confidence to socialize					
13. My hearing loss makes me irritable						33. I avoid socializing with friends, relatives, or neighbors due to my hearing loss					
14. I keep quiet in a conversation to avoid saying the wrong thing						34. I avoid social situations due to my hearing loss					
15. I become frustrated when I cannot follow a conversation						35. I feel left out when I am with a group of people due to my hearing loss					
		Copyright ©	2019 MUSC	Foundation	for Researc	h Development, All Rights Reserved.			· · · · · · · · · · · · · · · · · · ·		

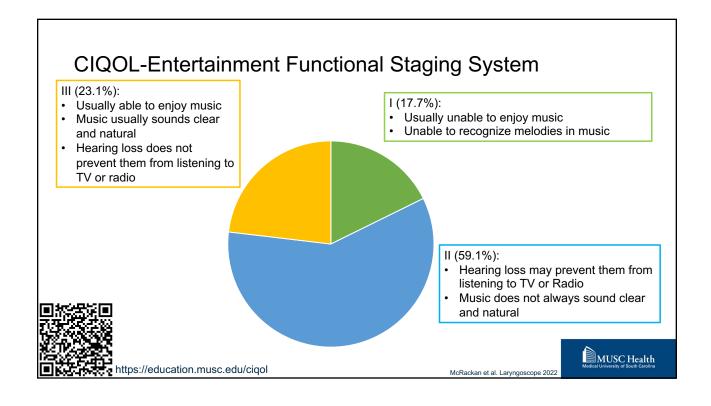
Functional Staging Systems

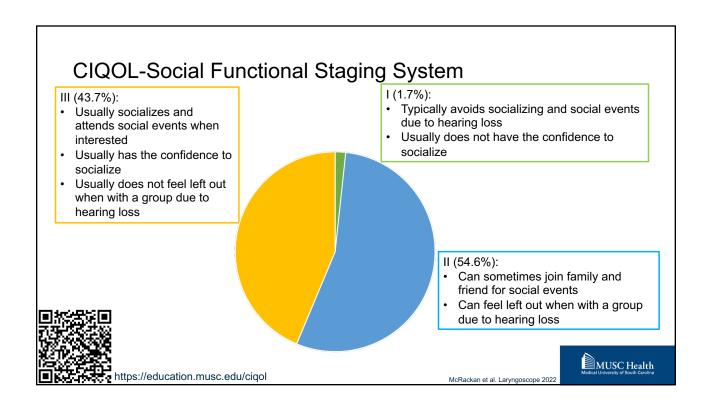

- Enhance the interpretability of PROM scores
 - Provide detailed descriptions of patient-reported abilities via clinical vignettes
 - Maintain psychometrically derived (item response theory; IRT) hierarchy of quantitative scores

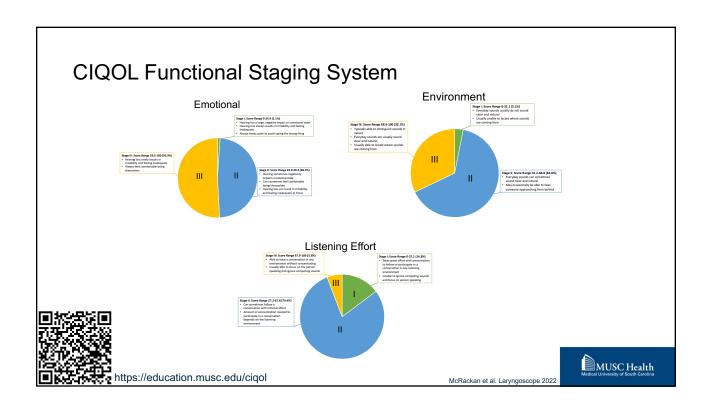



Used in other health care settings


Tao W, et al. Arch Phys Med Rehabil 2008 Stineman MG, et al. Arch Phys Med Rehabil 2003 Jette AM, et al. J Rehab Med 2007





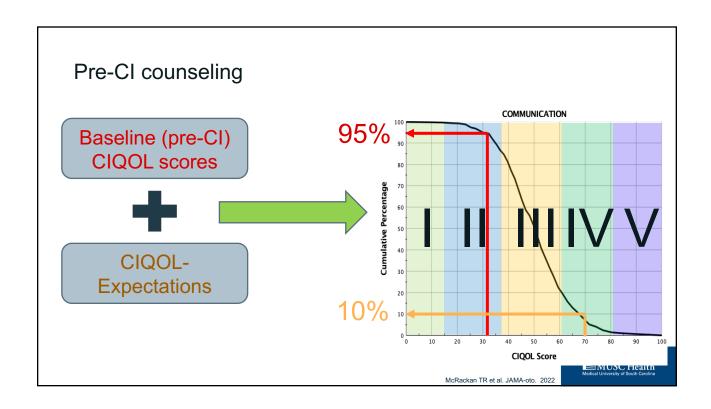


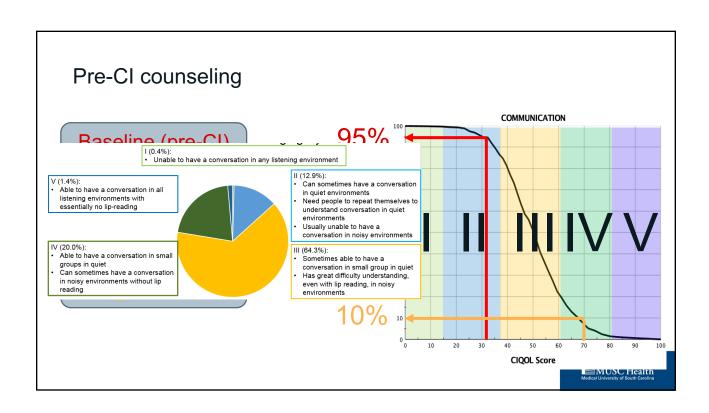
Theodore R. McRackan, MD, MSCR ©; Brittany N. Hand, PhD, OTR/L;
Cochlear Implant Quality of Life Development Consortium; Craig A. Velozo, PhD, OTR/L;
Judy R. Dubno, PhD ©

- Provide real-world understanding of functional abilities of CI users
 - Vast majority communicate well in quiet environments, but many have difficulty when there is background noise
 - o 80% supplement auditory input with lip-reading
 - o ~1 in 4 report music sounding clear and natural

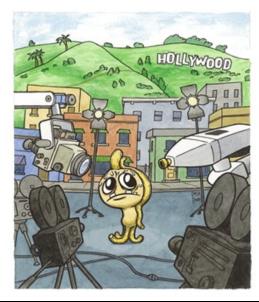
MUSC Health Medical University of South Carolina

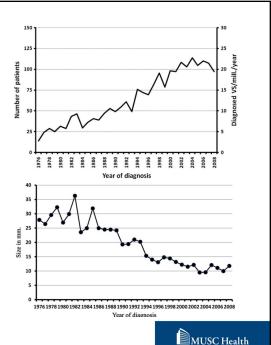
McRackan et al. Laryngoscope 2022


Development and Implementation of the Cochlear Implant Quality of Life (CIQOL) Functional Staging System


Theodore R. McRackan, MD, MSCR ©; Brittany N. Hand, PhD, OTR/L; Cochlear Implant Quality of Life Development Consortium; Craig A. Velozo, PhD, OTR/L; Judy R. Dubno, PhD

- Provide real-world understanding of functional abilities of CI users
- Helpful for discussion with potential CI patients
 - o Compare baseline abilities to normative data
 - o Compare expectation to normative data




Vestibular schwannoma management

Vestibular Schwannomas

- Changes in treatment over time
- o Increased detection
 - 75% decrease in average tumor size at time of diagnosis
 - Being diagnoses in older patients
 - 1/500 people lifetime prevalence
 - 3-5/100,000 persons per year risk

Vestibular Schwannomas

- Dramatic shift in practice patterns over time
- Focus on preservation of quality of life (balance, hearing, facial nerve) over tumor treatment
 - o Hearing loss is often patients' primary concern as it is most common presenting symptom
 - · Fairly small impact on long-term quality of life

Hearing Preservation in Observed Sporadic Vestibular Schwannoma: A Systematic Review

*Karl R. Khandalavala, †Elias S. Saba, ‡Armine Kocharyan, ‡Ghazal S. Daher, §Christine M. Lohse, ¶John P. Marinelli, and ‡||Matthew L. Carlson

- Systematic review of available literature (2000-2020)
- Identify changes in hearing over time in patients with observed vestibular schwannomas

Hearing Class	PTA Hearing Level (dB)	WRS (%)
А	≤30	≥70
В	>30, ≤50	≥50
С	>50	≥50
D	any level	<50

Hearing Preservation in Observed Sporadic Vestibular Schwannoma: A Systematic Review

*Karl R. Khandalavala, †Elias S. Saba, ‡Armine Kocharyan, ‡Ghazal S. Daher, §Christine M. Lohse, ¶John P. Marinelli, and ‡||Matthew L. Carlson

- 26 studies included (n=3,652 patients)
- o Fairly even gender distribution
- o Mean follow up 49.2 months (SD 26.5!)
- o Substantial variability in how tumor size described
- Only patients with initial serviceable hearing were included in final analysis (n=1,674)

Hearing Class	PTA Hearing Level (dB)	WRS (%)
Α	≤30	≥70
В	>30, ≤50	≥50
С	>50	≥50
D	any level	<50

Hearing Preservation in Observed Sporadic Vestibular Schwannoma: A Systematic Review

*Karl R. Khandalavala, †Elias S. Saba, ‡Armine Kocharyan, ‡Ghazal S. Daher, §Christine M. Lohse, ¶John P. Marinelli, and ‡||Matthew L. Carlson

• In total, 21% failed conservative management

Hearing Preservation in Observed Sporadic Vestibular Schwannoma: A Systematic Review

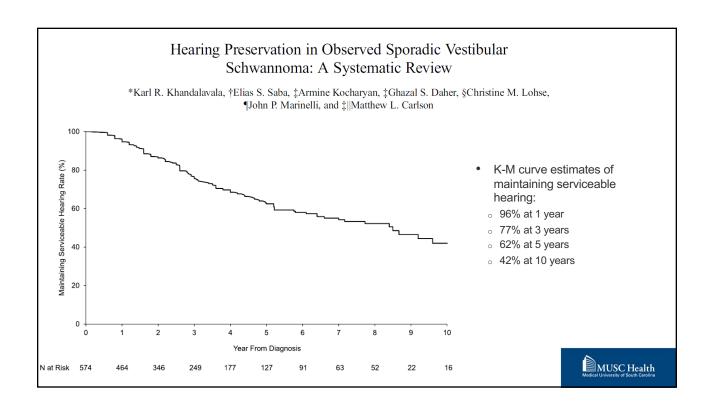

*Karl R. Khandalavala, †Elias S. Saba, ‡Armine Kocharyan, ‡Ghazal S. Daher, §Christine M. Lohse, ¶John P. Marinelli, and ‡||Matthew L. Carlson

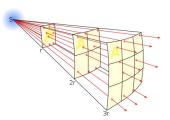
TABLE 2. Summary of serviceable hearing maintenance rates over time

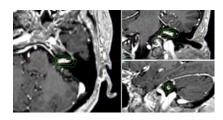
Year	Studies Reporting	Originally SH That Had F/u Audio	NumberSH	Aggregate % SH ^a	Average % SH ^b	Max % SH	Min % SH
1	7	612	582	95	96	100	94
2	6	435	377	87	87	93	82
3	7	427	311	73	73	80	61
4	5	271	177	65	64	74	55
5	6	403	225	56	57	68	45
6	4	193	101	52	55	63	40
7	4	246	107	44	44	56	34
8	2	94	38	40	45	55	35
9	2	86	29	34	41	52	30
10	2	81	26	32	37	44	30

- Add table 2
- Then add figure 2 (stimated survival rates of maintaining SH were 96% at 1 year following diagnosis, 77% at 3 years, 82% at 5 years, and 42% at 10 years following diagnosis (Fig. 2,)

Hearing Preservation in Observed Sporadic Vestibular Schwannoma: A Systematic Review

*Karl R. Khandalavala, †Elias S. Saba, ‡Armine Kocharyan, ‡Ghazal S. Daher, §Christine M. Lohse, ¶John P. Marinelli, and ‡||Matthew L. Carlson


- Hearing loss (on average) occurs ~3.5dB per year
 - o ?inevitable
- Hard to predict on individual patient basis (baseline hearing, initial tumor size)
- How does this compare to other treatment options?



Comparing Hearing Outcomes in Irradiated and Conservatively Managed Vestibular Schwannoma

*†Omneya Ismail, †Ossama Sobhy, †Samir Assal, ‡Paul Sanghera, *§||Philip Begg, and *Richard Irving

- Stereotactic radiation (SRS) initially thought to be the holy grail
 - o Gamma knife, LINAC, Cyberknife
- · Definition of success in SRS

Comparing Hearing Outcomes in Irradiated and Conservatively Managed Vestibular Schwannoma

*†Omneya Ismail, †Ossama Sobhy, †Samir Assal, ‡Paul Sanghera, *\$||Philip Begg, and *Richard Irving

- Comparison of hearing outcomes in patients treated with SRS vs. Observation
- Inclusion criteria:
 - ∘ Tumors <2cm
 - · Offered SRS when 2mm of linear growth noted
 - o 3 years follow up
 - o Used AAO-HNS hearing classification

Comparing Hearing Outcomes in Irradiated and Conservatively Managed Vestibular Schwannoma

*†Omneya Ismail, †Ossama Sobhy, †Samir Assal, ‡Paul Sanghera, *|PhilipBegg, and *Richard Irving

- N=247
 - o 140 observation/107 SRS
 - Mean age 59.2 (obs) and 57.5 (SRS)

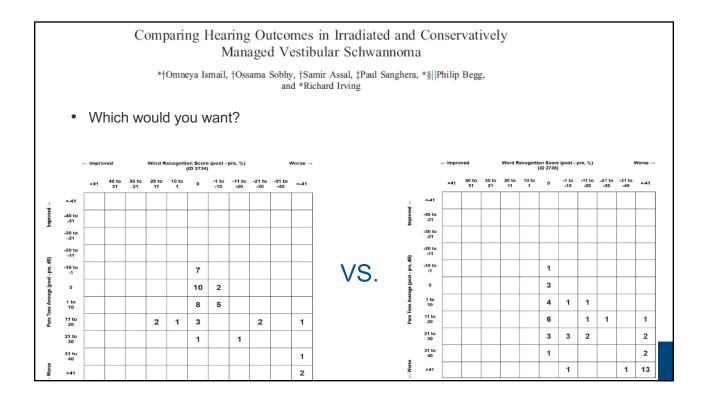
Comparing Hearing Outcomes in Irradiated and Conservatively Managed Vestibular Schwannoma

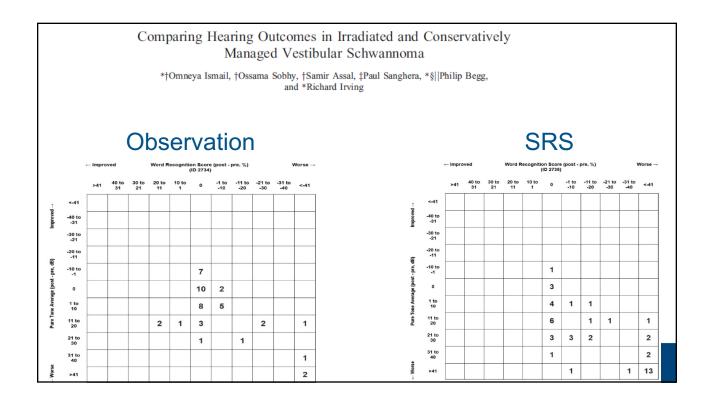
*†Omneya Ismail, †Ossama Sobhy, †Samir Assal, ‡Paul Sanghera, *\$||Philip Begg, and *Richard Irving

TABLE 1. Groups' demographic, tumor, and hearing characteristics

	Conservative Group $(n = 140)$	SRS Group (n=107)
Mean follow-up period, yrs ±sd	5.9 ± 1.6	7.1 ± 1.9
Mean age, Yrs ±sd	59.25 ± 13.16	57.5 ± 12.15
	(p=0.2855)	
Sex (male/female)	M: 76 F: 64	M: 55 F: 52
Tumor side (right/left)	R: 71 L: 69	R: 55 L: 52
	(p=0.915)	
Tumor location at diagnosis/Pre-SRS (intracanalicular/extracanalicular)	IC: 76 EC: 64	IC: 26 EC: 81
	$(p < 0.001^a)$	
Mean tumor size at diagnosis/pre-SRS, mm ±sd	9.59 ± 4.89	11.30 ± 5.02
Mean tumor size at last follow-up, mm ±sd	9.80 ± 5.44	13.68 ± 4.96
	(p=0.926)	$(p < 0.001^a)$
Mean PTA at diagnosis/pre-SRS, dBHL \pm sd	50.55 ± 28.71	50.49 ± 27.90
Mean PTA at last follow-up, dBHL \pm sd	61.75 ± 28.43	83.27 ± 25.97
-	$(p < 0.001^a)$	$(p < 0.001^a)$

Comparing Hearing Outcomes in Irradiated and Conservatively Managed Vestibular Schwannoma


*†Omneya Ismail, †Ossama Sobhy, †Samir Assal, ‡Paul Sanghera, *|Philip Begg, and *Richard Irving


TABLE 1. Groups' demographic, tumor, and hearing characteristics

	Conservative Group $(n = 140)$	SRS Group (n=107)
Mean tumor size at diagnosis/pre-SRS, mm ±sd	9.59 ± 4.89	11.30 ± 5.02
Mean tumor size at last follow-up, mm ±sd	9.80 ± 5.44 ($p = 0.926$)	13.68 ± 4.96 ($p < 0.001^a$)
Mean PTA at diagnosis/pre-SRS, dBHL ± sd	50.55 ± 28.71	50.49 ± 27.90
Mean PTA at last follow-up, dBHL \pm sd	$61.75 \pm 28.43 (p < 0.001^a)$	83.27 ± 25.97 $(p < 0.001^a)$

- Initial mean PTAs were similar for both groups
- Both groups had a significant deterioration of hearing over time
 - Observation: mean PTA showed average increase of 1.90 dB/yr
 - SRS: mean PTA showed average increase of 4.62 dB/yr

Comparing Hearing Outcomes in Irradiated and Conservatively Managed Vestibular Schwannoma

*†Omneya Ismail, †Ossama Sobhy, †Samir Assal, ‡Paul Sanghera, *§||Philip Begg, and *Richard Irving

Observation 5

SRS

	Tokyo Classification	Time of Diagnosis	Last Follow-up	p Value
n	Serviceable hearing Nonserviceable hearing	16 (34.8%)	11 (23.9%)	$p = 0.025^a$
		30 (65.2%)	35 (76.1%)	McN 0 0010
	Serviceable hearing Non-serviceable hearing	13 (27.7%) 34 (72.3%)	2 (4.3%) 45 (95.7%)	${}^{\mathrm{McN}}p = 0.001^a$

Comparing Hearing Outcomes in Irradiated and Conservatively Managed Vestibular Schwannoma

*†Omneya Ismail, †Ossama Sobhy, †Samir Assal, ‡Paul Sanghera, *§||Philip Begg, and *Richard Irving

- Significant hearing deterioration in both cohorts
 - o More substantial in patients undergoing SRS
 - Caveat #1: selection bias as these were growing tumors
 - · Counter caveat: only 3 year follow up
 - $_{\circ}\,$ Literature overall supports better hearing outcomes with conservative management
 - Hearing preservation surgery?

Questions?		
		MUSC Health Medical University of South Carolina