12th Annual Otolaryngology Literature Update Pediatric Otolaryngolgy IV

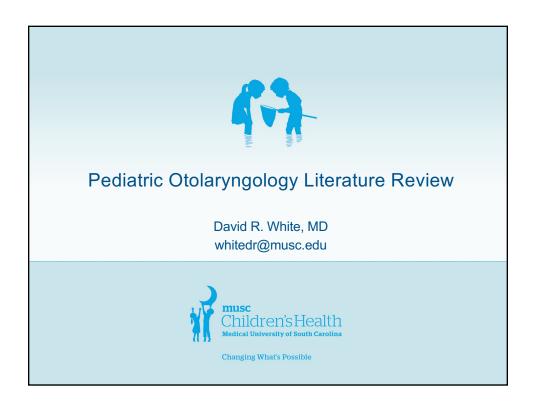
David R. White, M.D.

Professor

Director, Pediatric Otolaryngology
MUSC Children's Health Surgeon in Chief
Department of Otolaryngology - Head & Neck Surgery
Medical University of South Carolina
whitedr@musc.edu

David R. White, M.D. is a professor in the Department of Otolaryngology -- Head and Neck Surgery and the director of pediatric otolaryngology at the Medical University of South Carolina. He joined the department in 2005 after completing a fellowship in pediatric otolaryngology --head and neck surgery at Cincinnati Children's Hospital Medical Center. Dr. White is a native of Charleston, South Carolina, and graduated from Davidson College in 1994. He then received his M.D. from the Medical University of South Carolina and completed his residency in otolaryngology-head and neck surgery at the University of North Carolina.

Dr. White's practice focuses entirely on the care of children with ear, nose, and throat problems. He has authored over 100 articles and chapters in medical journals and textbooks and has won multiple research awards at national otolaryngology meetings. Dr. White has particular expertise in the treatment of children with ear/hearing problems, speech and swallowing disorders, and airway problems.


Dr. White is a member of the airway and aspiration center for children, craniofacial anomalies and cleft palate center, the velopharyngeal insufficiency and speech team, the cochlear implant center, and the vascular anomalies program at the Medical University of South Carolina.

12th Annual Otolaryngology Literature Update Medical University of South Carolina

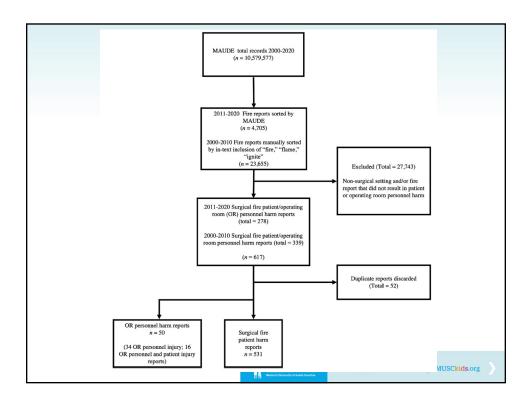
Pediatric Otolaryngolgy IV

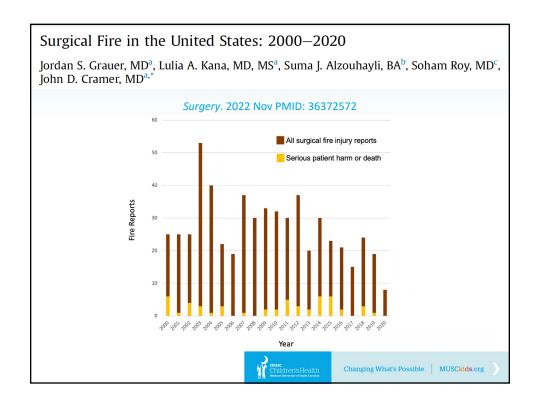
David R. White, M.D.

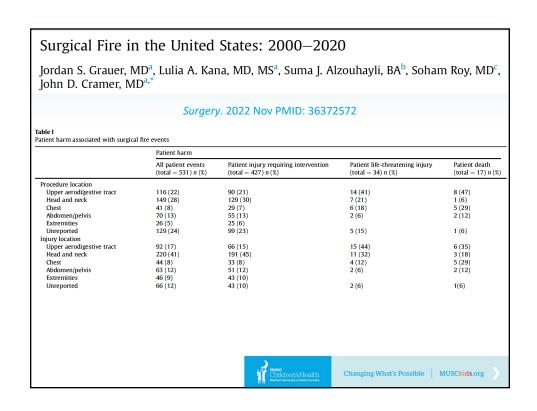
- Cartabuke R, Tobias JD, Jatana KR; SECTION ON ANESTHESIOLOGY AND PAIN MEDICINE, SECTION ON OTOLARYNGOLOGY-HEAD AND NECK SURGERY. Topical Nasal Decongestant Oxymetazoline: Safety Considerations for Perioperative Pediatric Use. Pediatrics. 2021 Nov 1;148(5):e2021054271. doi: 10.1542/peds.2021-054271. Epub 2021 Oct 4. PMID: 34607935.
- Grauer JS, Kana LA, Alzouhayli SJ, Roy S, Cramer JD. Surgical Fire in the United States: 2000-2020. Surgery. 2023 Feb;173(2):357-364. doi: 10.1016/j.surg.2022.10.015. Epub 2022 Nov 11. PMID: 36372572.
- Richardson CM, Perkins JN, Zenner K, Bull C, Lutsky E, Jensen DM, Dmyterko V, Bennett JT, Wenger TL, Dahl JP, Bonilla-Velez J, Bly RA, Geddis AE, Perkins JA. Primary targeted medical therapy for management of bilateral head and neck lymphatic malformations in infants. Int J Pediatr Otorhinolaryngol. 2023 Jan;164:111371. doi: 10.1016/j.ijporl.2022.111371. Epub 2022 Nov 15. PMID: 36459725; PMCID: PMC10243723.Bergeron M, Qualls H, de Alarcon A, Rutter MJ. Management of A-Frame Tracheal Deformity in Children With Endoscopic Resection Tracheoplasty. Laryngoscope. 2021 Mar;131(3):E719-E723. doi: 10.1002/lary.28953. Epub 2020 Jul 24. PMID: 33593035.
- Sim ES, Belsky MA, Konanur A, Yan A, Shaffer AD, Williams K, Martsolf GR, Chi DH, Jabbour N. Adherence to Tympanostomy Tube Clinical Practice Guidelines in an Advanced Practice Provider Clinic. Ann Otol Rhinol Laryngol. 2022 Nov 22:34894221135282. doi: 10.1177/00034894221135282. Epub ahead of print. PMID: 36412134.
- Stanisce L, Ahmad N, Solomon DH, Kolia N, Garcia LD, Spalla TC, Gaughan JP, Koshkareva Y. Improving Outpatient Follow-Up Rates for New In-Hospital Consults. Laryngoscope. 2022 Dec 13. doi: 10.1002/lary.30519. Epub ahead of print. PMID: 36511340.

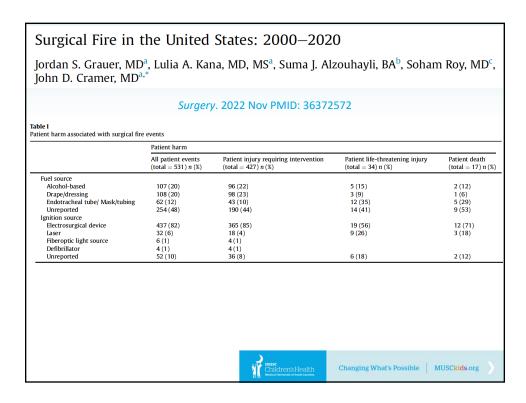
The Topics

- Surgical fire in the US
- Oxymetazoline safety in children
- In-hospital consult follow-up
- ▶ APP guideline adherence
- Primary medical therapy for lymphatic malformations


Surgical Fire in the United States: 2000–2020


Jordan S. Grauer, MD^a, Lulia A. Kana, MD, MS^a, Suma J. Alzouhayli, BA^b, Soham Roy, MD^c, John D. Cramer, MD^{a,*}


Surgery. 2022 Nov PMID: 36372572


- Objective:
 - To characterize the settings in which surgical fires occur, and to explore the causes of these fires
- Database analysis, 2000-2020.
 - Identified surgical fires reported to the Food and Drug Administration's Manufacturer and User Facility Device Experience database between 2000 and 2020.
 - Quantitative and descriptive content analyses were performed on free-text responses to identify contributing factors of surgical fire patient and personnel harm events.

Surgical Fire in the United States: 2000–2020 Jordan S. Grauer, MD^a, Lulia A. Kana, MD, MS^a, Suma J. Alzouhayli, BA^b, Soham Roy, MD^c, John D. Cramer, MD^{a,} Surgery. 2022 Nov PMID: 36372572 Table II Surgery location from our study compared with HCUP Surgeries in Hospital-Based Ambulatory Surgery and Hospital Inpatient Settings, 2014 report Statistical Brief #223. HCUP total n (%) MAUDE total n (%) Unadjusted OR 95% CI 21,775,000 (100) 565 (100) Procedure location 4.14-7.22 11.93-21.34 2,347,700 (11) 152 (27) 5.47 Head and neck 624,400 (3) 118 (21) 15.96 Upper aerodigestive tract 1,807,000 (8) 1.42-2.99 Chest 44 (8) 2.06 Abdomen and pelvis 6,247,900 (29) 74 (13) Extremities 6,583,800 (30) 28 (5) 0.36 0.23-0.55 All others 4,164,200 (19) 149 (26) 2.29-3.99

Surgical Fire in the United States: 2000–2020

Jordan S. Grauer, MD^a, Lulia A. Kana, MD, MS^a, Suma J. Alzouhayli, BA^b, Soham Roy, MD^c, John D. Cramer, MD^{a.*}

Surgery. 2022 Nov PMID: 36372572

Discussion

- Upper aerodigestive and head and neck are the most common locations for surgical fires.
- Upper aerodigestive location associated with highest risk of lifethreatening injuries and patient death.
- Electrosurgical devices are the most common ignition source (82%).
 - 56% of life threatening injuries
 - ❖ 71% of deaths

Surgical Fire in the United States: 2000–2020

Jordan S. Grauer, MD^a, Lulia A. Kana, MD, MS^a, Suma J. Alzouhayli, BA^b, Soham Roy, MD^c, John D. Cramer, MD^{a,*}

Surgery. 2022 Nov PMID: 36372572

Fire triad

- Oxygen, ignition source, fuel
- <30% oxygen, suction in airway</p>

Intervention

- ❖ Disconnect airway circuit, remove ETT
- Flood airway with saline
- Remove all burning/burned material
- Resuscitate

Topical Nasal Decongestant Oxymetazoline: Safety Considerations for Perioperative Pediatric Use

Richard Cartabuke, MD, FAAP^a Joseph D. Tobias, MD, FAAP^b Kris R. Jatana, MD, FAAP^a SECTION ON ANESTHESIOLOGY AND PAIN MEDICINE, SECTION ON OTOLARYNGOLOGY—HEAD AND NECK SURGERY

Pediatrics. 2021 Nov PMID: 34607935

Background

- To date, there are limited objective pediatric data on the safety and specific dosing of topical oxymetazoline (eg, Afrin).
- An excessive unmonitored volume of nasal use could lead to serious adverse effects in children.
- Ingested oxymetazoline can activate central adrenergic receptors and lead to life-threatening cardiovascular instability, respiratory depression, and sedation.
- Several case reports exist with postoperative prolonged hypertension and tachycardia requiring prolonged anesthesia and IV beta blockers in young children.

Objective

Multidisciplinary review of available data regarding oxymetazoline use in children.

Topical Nasal Decongestant Oxymetazoline: Safety Considerations for Perioperative Pediatric Use

Richard Cartabuke, MD, FAAP^a, Joseph D. Tobias, MD, FAAP^a Kris R. Jatana, MD, FAAP^a SECTION ON ANESTHESIOLOGY AND PAIN MEDICINE, SECTION ON OTOLARYNGOLOGY—HEAD AND NECK SURGERY

Pediatrics. 2021 Nov PMID: 34607935

Key points

- Oxymetazoline is FDA approved for use in children aged 6 years and older.
- Off-label use in otolaryngologic surgery is common.
- Alpha-adrenergic agonist with greater activity at the a2 versus a1 adrenergic receptor, results in vasoconstriction.
- Two studies have demonstrated less effect on BP and HR compared to phenylephrine, epinephrine and cocaine.

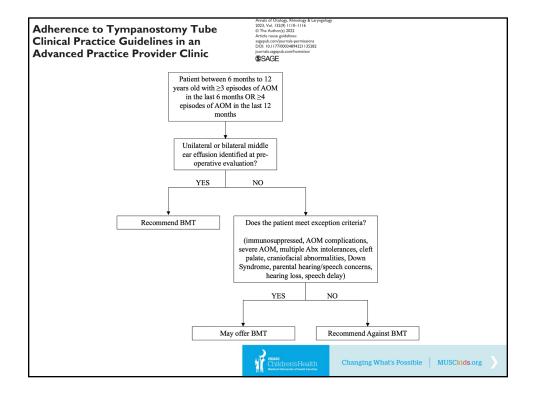
Topical Nasal Decongestant Oxymetazoline: Safety Considerations for Perioperative Pediatric Use

Richard Cartabuke, MD, FAAP^a Joseph D. Tobias, MD, FAAP^b Kris R. Jatana, MD, FAAP^c SECTION ON ANESTHESIOLOGY AND PAIN MEDICINE, SECTION ON OTOLARYNGOLOGY—HEAD AND NECK SURGERY

Pediatrics. 2021 Nov PMID: 34607935

- Key points
 - No recommended dosage/toxicity guidelines.
 - Oxymetazoline is rapidly absorbed across mucus membranes,
 - Plasma half-life of oxymetazoline was reported to vary from 1.72 to 2.32 hours in adults.
 - 75-fold increase in dosage of spray when bottle inverted.
 - Lower serum levels noted when applied on pledgets rather than spray method


Topical Nasal Decongestant Oxymetazoline: Safety Considerations for Perioperative Pediatric Use


Richard Cartabuke, MD, FAAP^a Joseph D. Tobias, MD, FAAP^a Kris R. Jatana, MD, FAAP^a SECTION ON ANESTHESIOLOGY AND PAIN MEDICINE, SECTION ON OTOLARYNGOLOGY—HEAD AND NECK SURGERY

Pediatrics. 2021 Nov PMID: 34607935

- Recommendations
 - ❖ Awareness of toxicity and variable dosing with bottle inversion.
 - Monitor total volume administered.
 - Communication between surgical and anesthesia teams regarding application (similar to epi use).
 - Consider use of pledgets.
 - Remove excess medication from pharynx.

2023, Vol. 132(9) 1110-1116 © The Author(s) 2022 Adherence to Tympanostomy Tube Clinical Practice Guidelines in an Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/00034894221135282 Advanced Practice Provider Clinic (\$)SAGE Edward S. Sim, MD¹0, Michael A. Belsky, MD, MS¹0, Anisha Konanur, MD¹0, Annie Yan, MD, MS¹, Amber D. Shaffer, PhD², Kathryn Williams, CRNP², Grant R. Martsolf, PhD, MPH, NP, FAAN², David H. Chi, MD², and Noel Jabbour, MD, MS² Table I. Patient Demographics. Total (n = 923) APP (n = 322)OTO (n=601) Age at pre-op, years, median (IQR) 1.4 (1.0-2.2) 1.3 (1.0-1.8) 1.4 (1.1-2.3) .016 Birth Sex, count (%) .625 Male 532 (58) 182 (57) 350 (58) Female 391 (42) 140 (43) 251 (42) Race, count (%) .628 White 814 (88) 286 (89) 528 (88) Black/African American 42 (5) 13 (4) 29 (5) Asian 11 (1) 3 (I) 8 (I) Native American/Alaskan Native I (0) 0 (0) I (0) More than one race 13 (1) 7 (2) 6(1) Unknown/Not Reported/Declined 42 (5) 13 (4) 29 (5) Ethnicity, count (%) .283 Non-Hispanic 829 (90) 292 (91) 537 (89) Hispanic 7(1) 4 (I) 3 (I) 87 (9) Unknown/Not Reported/Declined 26 (8) 61 (10) .234 Insurance type, count (%) 421 (70) Any private insurance 634 (69) 213 (66) Public insurance only 289 (31) 109 (34) 180 (30) Changing What's Possible MUSCkids.org

Edward S. Sim, MD¹(0), Michael A. Belsky, MD, MS¹(0), Anisha Konanur, MD¹(0), Annie Yan, MD, MS¹, Amber D. Shaffer, PhD², Kathryn Williams, CRNP³, Grant R. Martsolf, PhD, MPH, NP, FAAN², David H. Chi, MD², and Noel Jabbour, MD, MS²

Ann Otol Rhinol Laryngol. 2022 Nov 22. PMID: 36412134

Table 2. Adherence Rates to CPG for Patients With RAOM.

	APP (n=322)	OTO (n=601)	P value
Effusion present at preoperative evaluation	270 (84%)	457 (76%)	.005
No effusion at preoperative evaluation but met exception criteria	26 (8%)	68 (11%)	.138
Met either criterion	296 (92%)	525 (87%)	.037

Note. Bonferroni correction critical value, P = .017.

Table 3. Univariate Logistic Regression Analysis of Agreement of Pre-operative and Intra-operative Middle Ear Effusion Determination by Pre-operative Provider Type.

	Pre-operativ	Pre-operative provider type		
	APP	ОТО	P value	Odds ratio (95% CI)
Agreement on MEE identification	145 (45%)	285 (47%)	.488	1.101 (0.839-1.445)

Adherence to Tympanostomy Tube Clinical Practice Guidelines in an Advanced Practice Provider Clinic

Annals of Otology, Rhinology & Laryngolog 2023, Vol. 132(9) 1110–1116 © The Author(s) 2022 Article reuse guidelines: asgepub. com/journals-permissions DOI: 10.1177/00034894221135282 journals.asgepub.com/home/aor

Edward S. Sim, MD¹⑤, Michael A. Belsky, MD, MS¹⑥, Anisha Konanur, MD¹⑥, Annie Yan, MD, MS¹, Amber D. Shaffer, PhD², Kathryn Williams, CRNP³, Grant R. Martsolf, PhD, MPH, NP, FAAN³, David H. Chi, MD², and Noel Jabbour, MD, MS²

Ann Otol Rhinol Laryngol. 2022 Nov 22. PMID: 36412134

Conclusions

- Retrospective single-institution study
- Independent APPs and attending OTOs similarly deliver effective evidence-based care for children with RAOM in accordance with the 2013 CPG recommendations.
- Supports the positive utility of incorporating APPs into practice models for treating prevalent conditions such as RAOM.
- Algorithmic design lends to APP management.

Changing What's Possible MUSCkids.org

Improving Outpatient Follow-Up Rates for New In-Hospital Consults

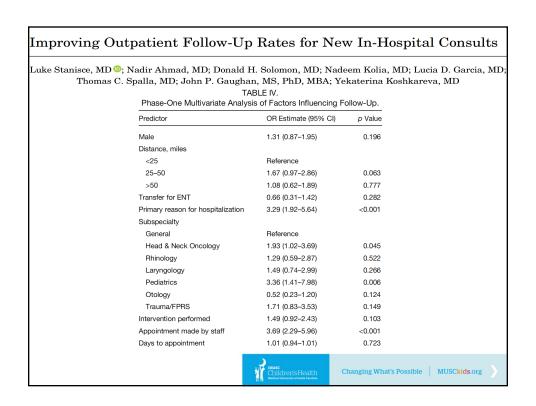
Luke Stanisce, MD [©]; Nadir Ahmad, MD; Donald H. Solomon, MD; Nadeem Kolia, MD; Lucia D. Garcia, MD; Thomas C. Spalla, MD; John P. Gaughan, MS, PhD, MBA; Yekaterina Koshkareva, MD

Laryngoscope. 2022 Dec 13. PMID: 36511340

Objectives

- ❖ To define the rate of outpatient follow-up after in-hospital consultation.
- To identify factors associated with establishing care
- To evaluate an alternative scheduling process to improve outpatient adherence.


Methods


- Two-phase, prospective study at an academic, tertiary-care institution from March 2020 to August 2022.
- First, all patients not previously known seen via inpatient consult who warranted outpatient follow-up were prospectively identified.
- Logistic regression analysis was used to identify demographic, disease, and practice factors predictive of follow-up.
- Second, a randomized control trial was performed to validate the effects of pre-assigning appointments prior to discharge.

Improving Outpatient Follow-Up Rates for New In-Hospital Consults Luke Stanisce, MD 🗓; Nadir Ahmad, MD; Donald H. Solomon, MD; Nadeem Kolia, MD; Lucia D. Garcia, MD; Thomas C. Spalla, MD; John P. Gaughan, MS, PhD, MBA; Yekaterina Koshkareva, MD TABLE I. Phase-One Follow-Up Outcomes. Outcome Incidence (%) Sample size 500 Lost to follow-up 272 (54.4) Followed up 228 (45.6) Appointment scheduled 301 (60.2) Cancelled* 48 (15.9) No-show* 42 (14.0) Rescheduled* 38 (12.6) Days to appointment, median 21 *Frequencies adjusted for appointments scheduled. Changing What's Possible MUSCkids.org

	e Conort Demo	graphic Factors.	
Variable	Incidence (%)	Follow-Up Rate (%)	p Val
Gender			0.07
Male	268 (53.6)	49.3	
Female	232 (46.4)	41.4	
Age, median	49	-	0.304
<17	76 (15.2)	55.3	0.310
18–40	127 (25.4)	43.3	
40-61	138 (27.6)	42.8	
>61	159 (31.8)	45.3	
English primary language	447 (89.4)	45.2	0.593
Race			0.386
Caucasian	256 (51.2)	45.3	
African American	136 (27.2)	41.9	
Hispanic	97 (19.4)	52.6	
Other	11 (2.2)	54.5	
Insurance			0.483
Government	294 (58.8)	45.6	
Commercial/private	180 (36.0)	47.2	
Uninsured	26 (5.2)	34.6	
Distance, miles			0.105
<25	311 (62.2)	42.4	
25-50	95 (19.0)	54.7	
>50	94 (18.8)	46.8	

Improving Outpatient Follow-Up Rates for New In-Hospital Consults

Luke Stanisce, MD 🍮; Nadir Ahmad, MD; Donald H. Solomon, MD; Nadeem Kolia, MD; Lucia D. Garcia, MD; Thomas C. Spalla, MD; John P. Gaughan, MS, PhD, MBA; Yekaterina Koshkareva, MD

TABLE VI.
Phase-Two Follow-Up Outcomes.

	•		
	Pre-Assigned Group	Control Group	
Outcome	n = 50 (%)	n = 50 (%)	p Value
Lost to follow-up	9 (18)	40 (80)	<0.001
Followed up	41 (82)	10 (20)	
Appointment scheduled	50 (100)	14 (28)	
Cancelled*	4 (8)	3 (21)	0.171
No-show*	5 (10)	1 (7)	0.608
Rescheduled*	3 (6)	1 (4)	0.470
Days to appointment, median	16	33	< 0.001

Changing What's Possible MUSCkids.org

Improving Outpatient Follow-Up Rates for New In-Hospital Consults

Luke Stanisce, MD 💩; Nadir Ahmad, MD; Donald H. Solomon, MD; Nadeem Kolia, MD; Lucia D. Garcia, MD; Thomas C. Spalla, MD; John P. Gaughan, MS, PhD, MBA; Yekaterina Koshkareva, MD

Laryngoscope. 2022 Dec 13. PMID: 36511340

Conclusions

- ❖ Over 50% of new patients seen via in-hospital consultation without prior outpatient evaluation were lost to follow-up.
- ENT-related illnesses necessitating hospitalization and those of Oncology and Pediatric subspecialties were independent predictors for establishing outpatient care.
- Pre-assigning appointments prior to discharge were associated with increased outpatient adherence, as supported by randomized prospective evidence.

Primary targeted medical therapy for management of bilateral head and neck lymphatic malformations in infants

Clare M. Richardson ^{a,b}, Jonathan N. Perkins ^{a,b}, Kaitlyn Zenner ^b, Catherine Bull ^a, Erika Lutsky ^a, Dana M. Jensen ^c, Victoria Dmyterko ^c, James T. Bennett ^{c,d}, Tara L. Wenger ^d, John P. Dahl ^{a,b,c}, Juliana Bonilla-Velez ^{a,b,c}, Randall A. Bly ^{a,b}, Amy E. Geddis ^{c,c}, Jonathan A. Perkins ^{a,b,c,*}

Int J Pediatr Otorhinolaryngol. 2022 Nov 15, PMID: 36459725

Objectives

Authors hypothesized that primary targeted medical therapy (pTMT) with diagnostic needle aspiration reduces the need for invasive therapy such as surgical resection and/or sclerotherapy.

Methods

- Retrospective case review was performed of infants with BHNLMs (Grade 2 or De Serres stage IV and V) treated from 2000 to 2021.
- Patients were divided into two cohorts: those managed with pTMT and those managed with observation, sclerotherapy, or surgical intervention (non-pTMT).
- pTMT patients had sirolimus initiated in the first month of life and underwent needle aspiration of malformation cyst fluid.

Primary targeted medical therapy for management of bilateral head and neck lymphatic malformations in infants

Clare M. Richardson ^{a,b}, Jonathan N. Perkins ^{a,b}, Kaitlyn Zenner ^b, Catherine Bull ^a, Erika Lutsky ^a, Dana M. Jensen ^c, Victoria Dmyterko ^c, James T. Bennett ^{c,d}, Tara L. Wenger ^d, John P. Dahl ^{a,b,c}, Juliana Bonilla-Velez ^{a,b,c}, Randall A. Bly ^{a,b}, Amy E. Geddis ^{c,e}, Jonathan A. Perkins ^{a,b,c,*}

Int J Pediatr Otorhinolaryngol. 2022 Nov 15, PMID: 36459725
Table 1

Demographic and diagnostic description of the study population.

	pTMT n = 3 (33%)	Non-pTMT $n = 6$ (66%)	Total n = 9
Gender			
Male	2 (66%)	6 (100%)	8 (89%)
Female	1 (33%)	0 (0%)	1 (11%)
Race or Ethnicity			
Caucasian	2 (66%)	5 (83%)	7 (78%)
Asian	1 (33%)	0 (0%)	1 (11%)
Native American	0 (0%)	1 (17%)	1 (11%)
Age at Diagnosis			
Prenatal	3 (100%)	6 (100%)	9 (100%)
EXIT Procedure			
Yes	2 (66%)	5 (83%)	7 (78%)
No	1 (33%)	1 (17%)	2 (22%)
Malformation Grade	31		
2	3 (100%)	6 (100%)	9 (100%)
Composition			
Mixed	3 (100%)	6 (100%)	9 (100%)
·			

Primary targeted medical therapy for management of bilateral head and neck lymphatic malformations in infants

Clare M. Richardson ^{a,b}, Jonathan N. Perkins ^{a,b}, Kaitlyn Zenner ^b, Catherine Bull ^a, Erika Lutsky ^a, Dana M. Jensen ^c, Victoria Dmyterko ^c, James T. Bennett ^{c,d}, Tara L. Wenger ^d, John P. Dahl ^{a,b,c}, Juliana Bonilla-Velez ^{a,b,c}, Randall A. Bly ^{a,b}, Amy E. Geddis ^{c,e}, Jonathan A. Perkins ^{a,b,c,*}

Table 4

Primary treatment details. *indicates a patient who died prior to initiation of definitive treatment. ** indicates patient who died after a combination of sildenafil, sclerotherapy and surgery.

Patient	Primary Treatment	Age at Treatment Initiation
pTMT Group		
1	Sirolimus + ASA	19 days
2	Sirolimus + ASA	9 days
3	Sirolimus + ASA	6 days
non-pTMT Gr	oup	
1	None*	n/a
2	Needle aspiration	5 days
3	Surgery	30 days
4	Surgery	17 days
5	Surgery + sclerotherapy**	6 days
6	Surgery + sclerotherapy	7 days

Changing What's Possible MUSCkids.org

Primary targeted medical therapy for management of bilateral head and neck lymphatic malformations in infants

Clare M. Richardson ^{a,b}, Jonathan N. Perkins ^{a,b}, Kaitlyn Zenner ^b, Catherine Bull ^a, Erika Lutsky ^a, Dana M. Jensen ^c, Victoria Dmyterko ^c, James T. Bennett ^{c,d}, Tara L. Wenger ^d, John P. Dahl ^{a,b,c}, Juliana Bonilla-Velez ^{a,b,c}, Randall A. Bly ^{a,b}, Amy E. Geddis ^{c,e}, Jonathan A. Perkins ^{a,b,c,*}

Table 4

Primary treatment details. *indicates a patient who died prior to initiation of definitive treatment. ** indicates patient who died after a combination of sildenafil, sclerotherapy and surgery.

Patient	Primary Treatment	Age at Treatment Initiation
pTMT Group		
1	Sirolimus + ASA	19 days
2	Sirolimus + ASA	9 days
3	Sirolimus + ASA	6 days
non-pTMT Gro	up	
1	None*	n/a
2	Needle aspiration	5 days
3	Surgery	30 days
4	Surgery	17 days
5	Surgery + sclerotherapy**	6 days
6	Surgery + sclerotherapy	7 days

Primary targeted medical therapy for management of bilateral head and neck lymphatic malformations in infants

Clare M. Richardson ^{a,b}, Jonathan N. Perkins ^{a,b}, Kaitlyn Zenner ^b, Catherine Bull ^a, Erika Lutsky ^a, Dana M. Jensen ^c, Victoria Dmyterko ^c, James T. Bennett ^{c,d}, Tara L. Wenger ^d, John P. Dahl ^{a,b,c}, Juliana Bonilla-Velez ^{a,b,c}, Randall A. Bly ^{a,b}, Amy E. Geddis ^{c,e}, Jonathan A. Perkins ^{a,b,c,*}

Table 5

Primary treatment adjuncts and incidence both before and after initial discharge from the hospital. *indicates a patient within the cohort who died prior to discharge from the hospital, and may have received incomplete treatment.

	$\begin{array}{c} \text{pTMT} \\ \text{n} = 3 \end{array}$	Non-pTMT $n = 6$
Needle Aspiration	3 (100%)	1 (17%)
Tracheostomy	0 (0%)	4 (66%)
Number of Invasive Therapie	s Prior to Discharge	
0	0 (0%)	2* (33%)
1–2	0 (0%)	2* (33%)
3	0 (0%)	1 (17%)
>3	0 (0%)	1 (17%)
Deceased Prior to Discharge		
Yes	0 (0%)	2 (33%)
No	3 (100%)	4 (66%)
Total Number of Invasive The	erapies (Lifetime)	
0	3 (100%)	1* (0%)
1–5	0 (0%)	2* (33%)
5–10	0 (0%)	0 (0%)
>10	0 (0%)	3 (50%)
	musc Childron's Hoalth	Changing What's Possible

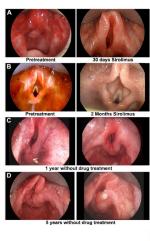
Primary targeted medical therapy for management of bilateral head and neck lymphatic malformations in infants

Clare M. Richardson ^{a,b}, Jonathan N. Perkins ^{a,b}, Kaitlyn Zenner ^b, Catherine Bull ^a, Erika Lutsky ^a, Dana M. Jensen ^c, Victoria Dmyterko ^c, James T. Bennett ^{c,d}, Tara L. Wenger ^d, John P. Dahl ^{a,b,c}, Juliana Bonilla-Velez ^{a,b,c}, Randall A. Bly ^{a,b}, Amy E. Geddis ^{c,e}, Jonathan A. Perkins ^{a,b,c,*}

Int J Pediatr Otorhinolaryngol. 2022 Nov 15, PMID: 36459725

Table 6
Hospital stay data compared between cohorts.

	pTMT median days (IQR)	Non-pTMT median days (IQR)
Hospital Days After Birth	58 (26–89)	67 (19–97)
Days Intubated	22 (3-41)	25 (0–50)
Total Hospital Days (1st Year of Life)	68 (9–107)	68 (19–98)
Intensive Care Days (1st Year of Life)	35 (12–83)	42 (19–80)
Unplanned Hospital Days (1st Year of Life)	0	10 (5–43)



MUSCkids.org

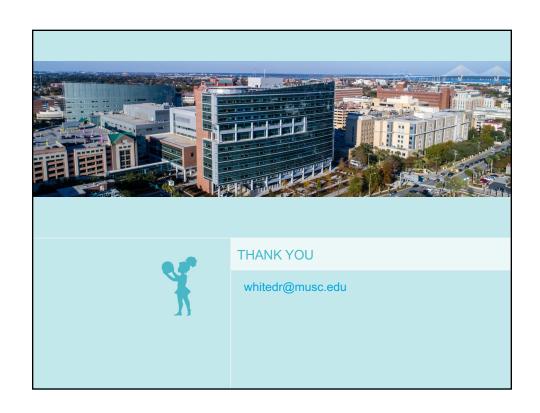
Primary targeted medical therapy for management of bilateral head and neck lymphatic malformations in infants

Clare M. Richardson a,b, Jonathan N. Perkins b, Kaitlyn Zenner b, Catherine Bull a, Erika Lutsky ^a, Dana M. Jensen ^c, Victoria Dmyterko ^c, James T. Bennett ^{c,d}, Tara L. Wenger ^d, John P. Dahl a,b,c, Juliana Bonilla-Velez a,b,c, Randall A. Bly a,b, Amy E. Geddis c,e, Jonathan A. Perkins a,

Int J Pediatr Otorhinolaryngol. 2022 Nov 15, PMID: 36459725

Changing What's Possible MUSCkids.org

Primary targeted medical therapy for management of bilateral head and neck lymphatic malformations in infants


Clare M. Richardson a,b, Jonathan N. Perkins a,b, Kaitlyn Zenner b, Catherine Bull a, Erika Lutsky ^a, Dana M. Jensen ^c, Victoria Dmyterko ^c, James T. Bennett ^{c,d}, Tara L. Wenger ^d, John P. Dahl ^{a,b,c}, Juliana Bonilla-Velez ^{a,b,c}, Randall A. Bly ^{a,b}, Amy E. Geddis ^{c,c}, Jonathan A. Perkins a,b,c,

Int J Pediatr Otorhinolaryngol. 2022 Nov 15, PMID: 36459725

Conclusions

- The results indicate that pTMT may be superior treatment for BHNLMs compared to traditional management by reducing the need for invasive therapies including tracheostomy.
- Needle aspiration is a minimally invasive adjunct that can be successfully used for therapeutic and diagnostic purposes.
- ▶ While the groups did not differ in intubation time, intensive care unit time, or initial hospital stay, the pTMT group did not have any unplanned hospital admissions within the first year of life and significantly decreased invasive procedures compared to the non-pTMT group.
- More prospective work is needed to further determine how pTMT fits into the treatment algorithm of head and neck lymphatic malformation patients.

