12th Annual Otolaryngology Literature Update Otology III

Ted A. Meyer, M.D., PhD

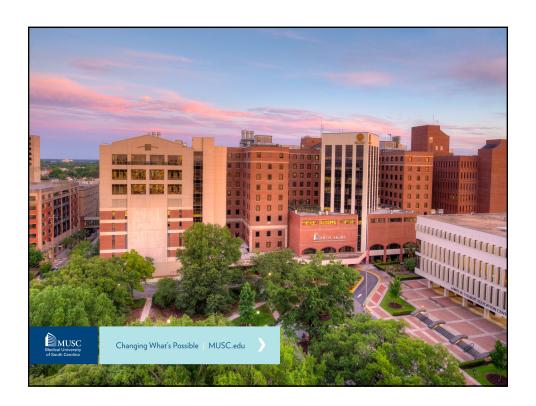
Professor
Director, Otology & Neurotology
Department of Otolaryngology - Head & Neck Surgery
Medical University of South Carolina
meyerta@musc.edu

Ted A. Meyer, M.D., Ph.D. joined the Department of Otolaryngology – Head and Neck Surgery at MUSC in 2004. He was named the director of the MUSC Cochlear Implant Program. Dr. Meyer grew up in St. Louis, MO, and graduated from Washington University where he majored in mathematics and was captain of the tennis team. In 1995, he graduated from the Medical Scholars Program with a medical degree and a doctorate degree from the University Of Illinois College Of Medicine.

His doctorate degree was from the Department of Speech & Hearing Science. Dr. Meyer then completed a residency in Otolaryngology – Head and Neck Surgery at Indiana University, followed by a fellowship in Otology-Neurotology at the University of Iowa. Dr. Meyer then joined the faculty at MUSC. Dr. Meyer has limited his practice to the evaluation and treatment of hearing and balance disorders in adults and children.

Examples of his specialty areas include hearing loss, cochlear implants, ear infections, tympanic membrane perforations, cholesteatoma, otosclerosis, vertigo, Meniere's disease, facial paralysis, congenital ear malformations, acoustic neuromas, glomus tumors and other skull base lesions. As director of the MUSC Cochlear Implant Program, Dr. Meyer oversees all clinical and research protocols involving patients with cochlear implants.

Dr. Meyer has published 100 manuscripts and eight book chapters. He has received three grants to study mechanisms of speech perception with cochlear implants, and he frequently presents his results at national and international research meetings. Dr. Meyer is a fellow in the American Academy of Otolaryngology – Head and Neck Surgery, and chairs the International Board of Directors for AG Bell.


12th Annual Otolaryngology Literature Update Medical University of South Carolina

Otology III

Ted A. Meyer, M.D., PhD

- Braun M, Stoerzel M, Wollny M, Schoebel C, Ulrich Sommer J, Heiser C. Patient-reported outcomes with hypoglossal nerve stimulation for treatment of obstructive sleep apnea: a systematic review and meta-analysis. Eur Arch Otorhinolaryngol. 2023 Jun 24. doi: 10.1007/s00405-023-08062-1. Epub ahead of print. PMID: 37354340.
- Cagle JL, Young BD, Shih MC, Nguyen SA, Meyer TA, White DR, Clemmens CS. Portable Sleep Study Device Versus Polysomnography: A Meta-analysis. Otolaryngol Head Neck Surg. 2023 May;168(5):944-955. doi: 10.1002/ohn.179. Epub 2023 Jan 19. PMID: 36939562.
- Daher GS, Kocharyan A, Dillon MT, Carlson ML. Cochlear Implantation Outcomes in Adults With Single-Sided Deafness: A Systematic Review and Meta-analysis. Otol Neurotol. 2023 Apr 1;44(4):297-309. doi: 10.1097/MAO.000000000003833. Epub 2023 Feb 15. PMID: 36791341.
- Hubbell RD, Toivonen J, Kawai K, Kim HJ, Nieman CL, Ward BK, Poe DS. Patulous Eustachian Tube Dysfunction Symptoms Following Balloon Dilation. Laryngoscope. 2023 Mar 17. doi: 10.1002/lary.30659. Epub ahead of print. PMID: 36929856.
- Park LR, Dillon MT, Buss E, Brown KD. Two-Year Outcomes of Cochlear Implant Use for Children With Unilateral Hearing Loss: Benefits and Comparison to Children With Normal Hearing. Ear Hear. 2023 Mar 7. doi: 10.1097/AUD.0000000000001353. Epub ahead of print. PMID: 36879386.
- Shah HP, Salehi PP, Ihnat J, Kim DD, Salehi P, Judson BL, Azizzadeh B, Lee YH. Resident Burnout and Well-being in Otolaryngology and Other Surgical Specialties:

 Strategies for Change. Otolaryngol Head Neck Surg. 2023 Feb;168(2):165-179. doi: 10.1177/01945998221076482. PMID: 35133919.
- Walters ZA, Chang KY, Cervenka B, Collar R, Hsieh TY. Ergonomics in Otolaryngologic Surgery: A State of the Art Review. Otolaryngol Head Neck Surg. 2023
 Mar;168(3):330-338. doi: 10.1177/01945998221117095. Epub 2023 Jan 28. PMID: 35943813.
- Yesantharao LV, Joo H, Wei EX, Lin SY, Vohra V, Agrawal Y, Galaiya D. Factors related to wellness and burnout in academic otolaryngology: A pre- and Post-COVID-19 analysis. Laryngoscope Investig Otolaryngol. 2023 Feb 24;8(2):409-416. doi: 10.1002/lio2.1033. PMID: 37090875; PMCID: PMC10116971.

Otology & more

Ted A. Meyer, MD, PhD

Professor Division Chief – Otology & Neurotology Otolaryngology Residency Program Director Neurotology Fellowship Program Director

MUSC
Department of Otolaryngology – Head & Neck Surgery

Conflicts of Interest

Inspire – PI – OSA Registry

Liva Nova – PI – Osprey Trial – new HGNS for OSA

Sound Pharmaceuticals - Co-I - Meniere's Disease

None related to today's presentations

Changing What's Possible

Patient-reported outcomes with hypoglossal nerve stimulation for treatment of OSA: A systematic review and meta-analysis.

Braun, Stoerzel, Wollny, Schobel, Sommer, Heiser

European Archives of Oto-Rhino-Laryngology – 2023

Germany – multiple institutions

Patient-reported outcomes with hypoglossal nerve stimulation for treatment of OSA: A systematic review and meta-analysis.

34 publications, 3785 patients – English language, >10 patients, followup > 3 months
Mean followup – 12 months
3701 patients – resp-synced HGNS
84 patients – continuous HGNS
Daytime sleepiness – significant improvement
Daytime functioning – significant improvement
Sleep quality – significant improvement

Changing What's Possible

Patient-reported outcomes with hypoglossal nerve stimulation for treatment of OSA: A systematic review and meta-analysis.

7 PROM instruments

Epworth Sleepiness Scale *** sig
Functional Outcomes of Sleep Questionnaire *** sig
Calgary Sleep Apnea QOL Index *** sig
Pittsburgh Sleep Quality Index ** sig (minimal diff NOT reached)
Others – small numbers

Patient-reported outcomes with hypoglossal nerve stimulation for treatment of OSA: A systematic review and meta-analysis.

So we have numerical improvement – AHI 35-5

And PROM improvement

Changing What's Possible

Portable sleep study device versus polysomnography: A meta-analysis.

Cagle, Young, Shih, Nguyen, Meyer, White, Clemmens

Otolaryngology - Head & Neck Surgery - 2023

MUSC

Portable sleep study device versus polysomnography: A meta-analysis.

Comparison of common sleep study measures

Simultaneous measures of

Portable sleep study devices and polysomnography

AHI – apnea-hypopnea index

ODI – oxygen desaturation index

RDI – respiratory disturbance index

O2 sat

LSAT – lowest oxyhemoglobin sat

Changing What's Possible

Portable sleep study device versus polysomnography: A meta-analysis.

24 studies, 1644 patients Mean age 50, mean BMI 30, 69% male

Meta correlations between portable and psg

AHI r=.89 (p<.001)

ODI r=.94 (p<.001)

RDI r=.83 (p<.001)

O2 sat r=.86 (p<.001)

LSAT r=.93 (p<.001)

Portable sleep study device versus polysomnography: A meta-analysis.

24 studies, 1644 patients Mean age 50, mean BMI 30, 69% male

Meta-regressions between portable and psg

AHI r=.96 (p<.001)

ODI r=.75 (p<.031)

RDI r=.99 (p=.005)

O2 sat r=.31 (p=.692)

LSAT r=.85 (p=.030)

Changing What's Possible

Portable sleep study device versus polysomnography: A meta-analysis.

24 studies, 1644 patients Mean age 50, mean BMI 30, 69% male

Meta-regressions between portable and psg

AHI r=.96 (p<.001)

ODI r=.75 (p<.031)

RDI r=.99 (p=.005)

O2 sat r=.31 (p=.692)

LSAT r=.85 (p=.030)

Cochlear implantation outcomes in adults with single-sided deafness: A systematic review and meta-analysis.

Daher, Kocharyan, Dillon, Carlson

Otology & Neurotology, 2023

Mayo & UNC

Changing What's Possible

Cochlear implantation outcomes in adults with single-sided deafness: A systematic review and meta-analysis.

2008-2021

36 studies, 800 adults, mean age 51, duration deafness 6 years Improved speech recognition in noise

Head Shadow - 2-6 dB S/N

Sound source localization error – 25deg p<.001

Reduced tinnitus severity – THI drop 30 points p<.001

Improved special hearing abilities p<.001

Cochlear implantation outcomes in adults with single-sided deafness: A systematic review and meta-analysis.

2016 – prevalence of SSD 1.5% of adults 3.5 million in US Significant tinnitus, some handicap from tinnitus

CROS, Bone-Conduction Devices

Yearly – 60,000 acquire SSD (a bunch) – would be around 900 in SC alone

2019 – FDA approved CI for SSD for adults and children over 5

Changing What's Possible

Cochlear implantation outcomes in adults with single-sided deafness: A systematic review and meta-analysis.

Insurance challenging VA good – follows FDA guidelines

Study – unilateral severe-profound SNHL (PTA >70 dB), normal or near normal other ear

Cochlear implantation outcomes in adults with single-sided deafness: A systematic review and meta-analysis.

Insurance challenging
VA good – follows FDA guidelines

Study – unilateral severe-profound SNHL (PTA >70 dB), normal or near normal other ear

Changing What's Possible

Two-year outcomes of cochlear implant use for children with unilateral hearing loss:
Benefits and comparison to children with normal hearing

Park, Dillon, Buss, Brown

Ear & Hearing - 2023

UNC

Two-year outcomes of cochlear implant use for children with unilateral hearing loss: Benefits and comparison to children with normal hearing

UNC study

18 children, SSD, Ages 3.5 to 6.5 at time of implantation

18 peers, bilateral normal hearing, age-matched - controls

SSD group – CI+NH better than NH alone, not at good as 2 ears with normal hearing

UNC

Changing What's Possible

Two-year outcomes of cochlear implant use for children with unilateral hearing loss: Benefits and comparison to children with normal hearing

Children with unilateral SNHL – hearing aid helps

Children with unilateral deafness – SSD – hearing aid does NOT help

Child at risk for educational problems – including grade repetition, cognitive and communication delays – compared to NH

Could use CROS, BAHA (not recommended for young children)

Localization and other spatial hearing measures – significantly impaired in children with SSD

Two-year outcomes of cochlear implant use for children with unilateral hearing loss: Benefits and comparison to children with normal hearing

Children in UNC SSD program have been reported on over the years - 12-month data look promising

This is 24-month data

All children had receptive and expressive language scores in the normal range at the time of the CI

Medel cochlear implants Mean age at CI – 5 Length of deafness 3.5 years

Changing What's Possible

Two-year outcomes of cochlear implant use for children with unilateral hearing loss: Benefits and comparison to children with normal hearing

Children in UNC SSD program had therapy with LSL-certified SLP during the first year with CI

Normal ear remained normal over time period

Thresholds, speech, and localization measures

CNC – normal ear 86% (worse than bilateral NH group – 93%)

CNC – CI ear – minimal up to about 58% on average

NH+Cl – big improvement in S/N for sentences – not as good as NH-NH

Two-year outcomes of cochlear implant use for children with unilateral hearing loss: Benefits and comparison to children with normal hearing

Localization

NH-NH - error < 10 degrees

SSD-NH alone – error about 60 degrees

SSD NH-CI together – error improves with age to about 20 degrees – long way from normal hearing – but big improvement

Changing What's Possible

Two-year outcomes of cochlear implant use for children with unilateral hearing loss: Benefits and comparison to children with normal hearing

UNC study

18 children, SSD, Ages 3.5 to 6.5 at time of implantation

18 peers, bilateral normal hearing, age-matched - controls

SSD group – CI+NH better than NH alone, not at good as 2 ears with normal hearing

UNC

Two-year outcomes of cochlear implant use for children with unilateral hearing loss:

Benefits and comparison to children with normal hearing

Park, Dillon, Buss, Brown

Ear & Hearing - 2023

UNC

Changing What's Possible

Patulous eustachian tube dysfunction symptoms following balloon dilation.

Hubbell, Toivonen, Kawai, Kim, Nieman, Ward, Poe

Laryngoscope - 2023

Multiple institutions – MEEI (Poe)

Patulous eustachian tube dysfunction symptoms following balloon dilation.

3 academic centers
295 consecutive BET (182 patients)
6-year period
Mean age 38 (7-78), 58% male
20 Patulous ETD after
Age <18 increases risk
Repeat BETD increases
Significant inflammation increases
Most symptoms – mild or intermittent

What are you telling patients?

Changing What's Possible

Patulous eustachian tube dysfunction symptoms following balloon dilation.

Patient characteristics obtained – age, sex, preop LPR, allergies, rhinosinusitis, ET mucosal inflammation score, balloon diameter, duration of balloon inflation, laterality, repetition, adjunctive procedures – adenoidectomy & other ear procedures

6 x 16 mm balloon – majority (Acclarent), some other sizes 5 x 16 or 3.5 x 12 balloon – most kids

Generally – inflation of 2 min

Patulous eustachian tube dysfunction symptoms following balloon dilation.

Male 58% Allergy 55%

LPR 16%

Rhinosinusitis - 34%

Most at MEEI

Bilateral 54%

Duration - 2 min (70%), 20% - less, 10% more

Other procedures - adenoid,

adenoid/tube/myringotomy/tplasty, tubes, myringotomy,

tplasty, others

Repetition - 5%

Changing What's Possible

Patulous eustachian tube dysfunction symptoms following balloon dilation.

PET overall – 7%

Age 7-18 13%

19-49 6%

50+ 2%

First 6% Repeat 20% p<.001

Duration 3 minutes - 12%. NS

Bad inflammation 19% p=.007

Other procedure yes 8%, no 5%. p=.02

Most with PET symptoms – within first month, one 5 months (but better with pregnancy), one 14 months (weight loss)

Patulous eustachian tube dysfunction symptoms following balloon dilation.

Most brief – couple short bouts Couple with exercise Two – lasted 6 months Seven > 6 months One – better after stopping caffeine Couple considered surgery

Changing What's Possible

One had surgery – helped

Ergonomics in otolaryngologic surgery: A state of the art review.

Walters, Chang, Cervenka, Collar, Hsieh

Otolaryngology – Head & Neck Surgery – 2022

University of Cincinnati

Ergonomics in otolaryngologic surgery: A state of the art review.

ENT Literature review – prevalence, severity, interventions to reduce problems

Chronic musculoskeletal pain is common Many procedures produce high ergonomic risk

Pain begins in training, paucity of information related to ergonomic risk in ENT residency curricula

Concern for diminished longevity as surgeon and burnout

Changing What's Possible

Ergonomics in otolaryngologic surgery: A state of the art review.

Discussion

Ergonomics in otolaryngologic surgery: A state of the art review.

Discussion

Changing What's Possible

Resident burnout and well-being in otolaryngology and other surgical specialties: Strategies for change.

Shah, Salehi, Ihnat, Kim, Salehi, Judson, Azizzadeh, Lee

Otolaryngology – Head & Neck Surgery – 2023

Multiple institutions – Yale (Shah, Lee)

Literature review (past 5 years)— burnout prevalence, factors, solutions, OTO and other residents

OTO residents - moderate to high burnout in 35-86%

Plastics residents - 58-66%

NSG residents - 11-67%

Urology residents – 38-68%

Ortho residents – 31-56%

OMFS residents – likely similar – don't have good data

Highest in PGY2 residents

Changing What's Possible

Resident burnout and well-being in otolaryngology and other surgical specialties: Strategies for change.

Highest in PGY2 Hours worked (>80/week) - ? Reports of >80 hours/week for OTO 2005 8%

2019 26% - supposed to have policies in place to avoid this

Implications – decreased empathy, moral distress and injury, poor health, decreased QOL, increased attrition, decreased interest in fellowship, increased medical errors

Lower rates Structured mentorship programs Wellness initiatives Increased ancillary support

Changing What's Possible

Resident burnout and well-being in otolaryngology and other surgical specialties: Strategies for change.

Burnout - defined

A maladaptive response to job-related stressors - can lead to lower productivity, person dysfunction, attrition, reduced quality of patient care

Adaptive response – exercise, hobbies, time with family – promote well-being
Burnout higher in surgical residencies than others

OB and ophthalmology not reviewed as do not mandate Gen Surgery training

Gen Surgery not reviewed – rotations, fellowships, ...

Changing What's Possible

Resident burnout and well-being in otolaryngology and other surgical specialties: Strategies for change.

Burnout – emotional exhaustion, depersonalization, decreased sense of personal accomplishment

EE – overload, emotional resource depletion

DP – callousness, dehumanization of others

Low PA – decreased feeling of competence and meaning in work

OTO resident burnout – first looked at in 2007 (Golub) – 514 residents – 86% experienced moderate-high burnout

Relatively high in OTO faculty as well (up to 70%), but higher in residents.

EE – higher in female residents

DP, PA - no difference in male - female

Changing What's Possible

Resident burnout and well-being in otolaryngology and other surgical specialties: Strategies for change.

BURNOUT consequences – substance abuse, depression, suicidality, patient harm, medical errors,

Strategies for change – many programs regularly survey resident emotional health – anonymous?

Formal mentorship – beneficial – more frequent meetings - beneficial

Wellness initiatives – mindfulness, meditation, healthy food, team building events, physical wellness activities

Some papers report positive benefit

Departmental support - financial and time

Institutional support – less administrative burden, nursing, clerical, coordinators, clerical, scribes, protected non-clinical time – couple hours a week

Culture of wellness, psychological safety

Changing What's Possible

Factors related to wellness and burnout in academic otolaryngology: A pre- and post-COVID-19 analysis.

Yesantharao, Joo, Wei, Lin, Vohra, Agrawal, Galaiya

Laryngoscope – 2023

Johns Hopkins University

2018 and 2020
Cross-sectional Survey
Single Institution – JHU
Otolaryngology Faculty
Low & High burnout groups
2018 High, n=8, 19%
2020 High, n=11, 37%
3 semi-structured interviews to faculty reporting no burnout

Changing What's Possible

Factors related to wellness and burnout in academic otolaryngology: A pre- and post-COVID-19 analysis.

2018 - Nov-Dec

42/71 participants (59%) completed survey – 9 questions Full and Assoc Prof – significantly LOWER odds of HIGH burnout Female – significantly HIGHER odds of HIGH burnout

2020 – Jul-Aug 30/49 (62%) completed survey – 14 questions Rank/gender did NOT predict HIGH burnout

2018 - myriad of work-related stressors

2020 – patient care and family obligation stressors

No burnout factors – focus on helping others, happiness over compensation as currency, gratitude for ability to have impact

Changing What's Possible

Factors related to wellness and burnout in academic otolaryngology: A pre- and post-COVID-19 analysis.

Why are you not burned out?

What do you do to prevent burnout?

How do you balance personal and professional life?

What personal wellness strategies do you practice on a regular basis?

How do you deal with professional stressors?

How do you maintain interest and enthusiasm for work?

What activities contribute most to your sense of personal accomplishment?

Which of your personal attributes do you think help you avoid burnout?

2010	2020
2018	2020

Any Burnout 62% 73%

High Burnout 19% 37% .094 Perc Prot Time less .002

Changing What's Possible

Factors related to wellness and burnout in academic otolaryngology: A pre- and post-COVID-19 analysis.

Source of Burnout 2018 2020

EPIC 57% 27% .010 ****

.002 ****EPIC fixed? Work act outside BH 64% 27% Society Work 38% 10% .013 - doing less? Academic Work 59% 30% .013 – doing less? Research 47% 10% .001 - doing less?

EPIC fixed?, EPIC not needed as workload decreased?

Reducing Burnout 2018

Increase access to scribes
Minimize required lectures activities after hours
Reduce administrative and bureaucratic overhead
Hire additional APP
Improve support staff training for patient questions
Automate EMR features

Changing What's Possible

Factors related to wellness and burnout in academic otolaryngology: A pre- and post-COVID-19 analysis.

Reducing Burnout 2020 (couple months into COVID)

Reduce Zoom fatigue Improve consistency in OR with COVID Automate EMR features

Fitness – important coping mechanism – high percentage of departmental exercise support – virtual fitness

