

Objectives

- Understand the different etiologies of VF immobility
- ▶ Formulate a proper treatment strategy

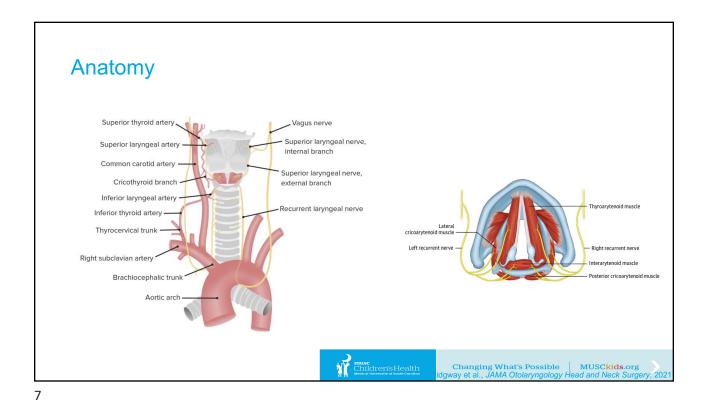
Changing What's Possible MUSCkids.org

3

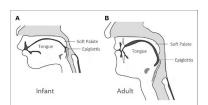
Outline

- Overview on anatomy and physiology
- Etiology of VFI
- Diagnostic evaluation
- Management
- ► Take home messages

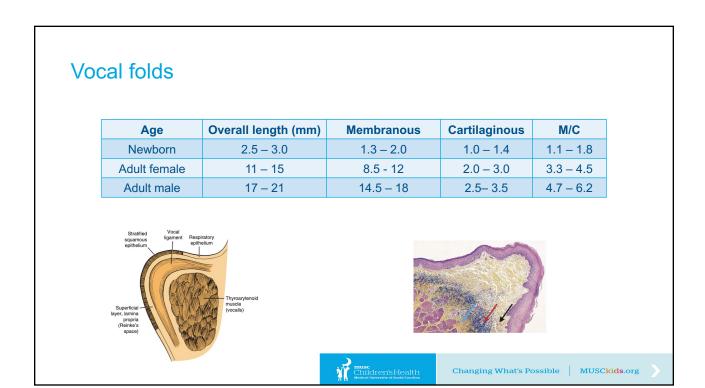

Changing What's Possible | MUSCkids.org


Embryology of the pediatric larynx

- ▶ The larynx is essential for a newborn's ability to breath, feed and cry
- Laryngeal development in the embryonic period (first 8 weeks)
- Maturation during the fetal period


Changing What's Possible MUSCkids.org

Infant vs. Adult larynx


- Infant larynx is located cephalad compared to its eventual descended position
 - ▶ Epiglottis near soft palate
- ▶ Size is 1/3rd of an adult larynx
- Vocal folds
 - ▶ ½ membranous
 - ▶ ½ cartilaginous

musc Children's Health

Changing What's Possible | MUSCkids.org

7 years

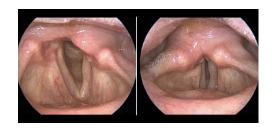
13 years

Hartnick et al. Laryngoscope 2005

9

Outline

- Overview on anatomy and physiology
- Etiology of VFI
- Diagnostic evaluation
- Management
- ▶ Take home messages



Changing What's Possible MUSCkids.org

11

Vocal fold immobility

- **Paresis**
- Paralysis
- Fixation/tethering
- ▶ Unilateral or Bilateral ~ 10% of congenital laryngeal disease
 - ▶ 2nd most common cause of neonatal stridor
 - Bilateral in neonates
 - ▶ Early in life without gender predilection

Changing What's Possible | MUSCkids.org

Etiology of VFI

- Congenital vs. acquired
- Neurologic vs. mechanical
- ▶ Unilateral VFP ~ 27-78%
 - ▶ latrogenic (13-81%)
 - ▶ Left > right
- ▶ Bilateral VFP ~ 22-73%
 - ▶ Idiopathic (17-75%)
 - Neurologic (20-55%)

Changing What's Possible MUSCkids.org

13

Etiology

Characteristic	No. (%) (N = 404)
mmobility	
Left	270 (66.8)
Right	32 (7.9)
Bilateral	102 (25.2)
Etiology	
Cardiac surgery	278 (68.8)
Idiopathic	85 (21.0)
Neurologic	30 (7.4)
Mixeda	5 (1.2)
Miscellaneous ^b	6 (1.5)

Jabbour et al. 2014

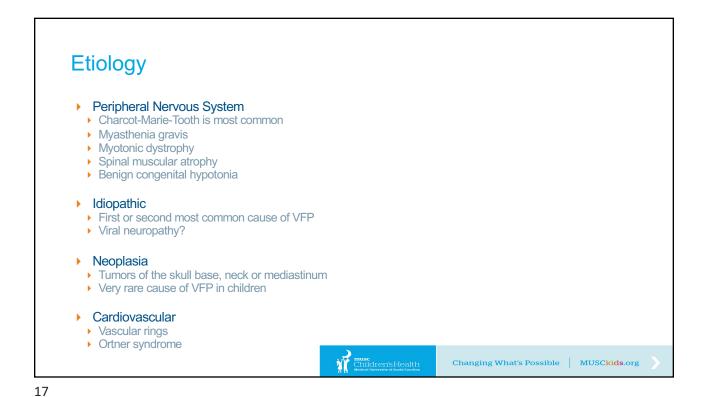
Changing What's Possible | MUSCkids.org

Etiology

- latrogenic/trauma
 - Any procedure that comes in proximity to the vagus or RLN
 - ➤ 8% left VFP after PDA ligation (Zbar, 1996)
 - ▶ Up to 25% in infants < 1150 g (*Smith*, 2009)
 - Posterior fossa trauma
 - Closed head injuries
 - ▶ Instrumentation of the larynx/hypopharynx (ETT)
 - ▶ Birth trauma
 - Vincristine neuropathy

Changing What's Possible MUSCkids.org

15


Etiology

- Central Nervous System
 - Mostly due to brainstem pathology
 - Most common is ACM (type 2 > type 1) → bilateral VFP
 - ▶ Complex respiratory problems in ACM
 - Leukodystrophies
 - Hydrocephalus
 - Perinatal hypoxia
 - ALS

musc Children's Health

Changing What's Possible MUSCkids.org



Signs and symptoms

Breathing

Phonation Swallowing

Changing What's Possible MUSCkids.org

19

Differential diagnosis

- ▶ Any obstruction from the nasal tip down to the trachea!
- Pyriform aperture stenosis
- Choanal atresia
- Laryngomalacia
- Laryngeal webs
- Subglottic stenosis
- Subglottic hemangioma
- Tracheal stenosis

Outline

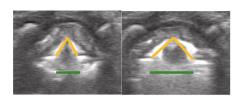
- Overview on anatomy and physiology
- Etiology of VFI
- Diagnostic evaluation
- Management
- Take home messages

Changing What's Possible MUSCkids.org

21

Diagnostic evaluation

- Thorough history
 - Symptoms
 - ► History of surgeries or trauma (including birth)
 - ▶ Detailed medical history (neuro/cardio/congenital anomalies)
 - Prematurity, ICU stays, intubation
- Examination
 - ABC
 - ▶ Listen and assess voice/breathing
 - Signs of increased work of breathing
 - ▶ Head and neck exam
 - Chest auscultation
 - Awake flexible laryngoscopy



Changing What's Possible MUSCkids.org

Laryngeal Ultrasound

- Low risk imaging option
- Better tolerated by young patients
- Sensitivity 91%
- Specificity 97% Hamilton et al. 2021

Deshpande et al. 2021

Changing What's Possible MUSCkids.org

23

Diagnostic evaluation

- Once VFP has been established → look for a cause
- MRI: brain, brainstem and skull base down to the mediastinum
- ▶ CT scan of the neck and chest in older children
- Swallowing studies
 - Barium swallow
 - **FEES**
- Rigid laryngoscopy and bronchoscopy

Changing What's Possible MUSCkids.org

Laryngeal EMG

- Useful in distinguishing vocal fold fixation from neurogenic paresis
- Relies on percutaneous placement of EMG needles for monitoring → sedation necessary in pediatric population
- Optimal examination between 4 weeks and 6 months of the expected injury
- Identifies normal innervation, absence of innervation, reinnervation and synkinesis
- Helpful in determining poor prognosis and treatment plan

25

ANIEM PRACTICE TOPIC

CONSENSUS STATEMENT: USING LARYNGEAL ELECTROMYOGRAPHY
FOR THE DIAGNOSIS AND TREATMENT OF VOCAL CORD PARALYSIS

MICHAEL C. MUNIN, MD, YOLANDA D. HEMAN-ACKAH, MD, MS,²³ CLARK A. ROSEN, MD,⁴ LUCIAN SULICA, MD,⁴

NICOLE MARONIAN, MD,⁴ STEVEN MANDEL, MD,² BRIDGET T. CAREY, MD,⁴ EARL CRAIG, MD,³ and
GARY GRONSETH, MD)⁵

- If prognostic information is required on ultimate vocal fold mobility in a patient with vocal fold paralysis that is >4 weeks and < 6 months
- LEMG may be performed to clarify treatment decisions in a patient with vocal fold immobility that is presumed to be caused by RLN
- The individual parameters of the LEMG study that determine return of vocal fold motion include
 - Active voluntary MUP recruitment
 - Presence of polyphasic MUPs within the first 6 months after injury

Diagnostic evaluation

Diagnostic tool	Sensitivity, %	Specificity, %	Additional comments
Flexible laryngoscopy	NR	NR	NA
Laryngeal ultrasonography	84 ¹⁶	95 ¹⁶	Infants (mean age, approximately $1\mbox{-}3$ mo) with vocal fold motion impairment
	95 ¹⁸	88 ¹⁸	Neonates (median age, approximately 15 d) with vocal fold paresis
Laryngeal electromyography	100 ¹⁹	92 ¹⁹	Children (median age, approximately 12.5 y) with unilateral vocal fold paralysis
Magnetic resonance imaging	67 ²⁰	86 ²⁰	Children and adult patients (age range, 1-78 y) with peripheral nerve pathologic findings
Computed tomography	NR	NR	NA

Ridgway et al. 2021

Changing What's Possible MUSCkids.org

27

Outline

- Overview on anatomy and physiology
- Etiology of VFI
- Diagnostic evaluation
- Management
- ► Take home messages

Changing What's Possible | MUSCkids.org

Prognosis

- Largely dependent on the cause of the paralysis and the presence and nature of muscle reinnervation
- ▶ Spontaneous recovery in children usually occurs around 6 to 12 months after injury

-	
Outcome	Value (N = 404)
Resolved, No. (%) ^a	113 (28.0)
Ongoing, No. (%)	249 (61.6)
1 Evaluation/unclear records, No. (%)	42 (10.4)
Time to resolution, mo ^a	
Mean	7.9
Median (range)	4.3 (0.4-38.7)
Clinical resolution, proportion (%) ^b	72/249 (28.9)
Follow-up, mo	
Mean	33.2
Median (range)	26.0 (0.6-120.5)
Total group with no symptoms, No. (%)	185 (45.8)

Jabbour et al. 2014

Changing What's Possible MUSCkids.org

29

Prognosis

	Resolved.	Time to Resolution, mo	
Variable	Proportion (%)	Mean	Median (Range)
Immobility			
Left	72/270 (27)	7.2	3.8 (0.5-38.7)
Right	8/32 (25)	6.3	3.8 (0.4-22.9)
Bilateral	33/102 (32)	11.6	7.5 (0.7-38.1)
Etiology			
Cardiac	68/278 (24)	6.3	3.9 (0.5-38.7)
Idiopathic	34/85 (40)	11.1	5.9 (0.7-34.2)
Neurologic	8/30 (27)	9.9	2.3 (0.4-38.1)
Mixed	0/5 (0)		
Miscellaneous	3/6 (50)	5.8	3.3 (1.6-12.6)

Jabbour et al. 2014

Changing What's Possible | MUSCkids.org

 $^{^{\}rm b}$ Patients in the ongoing group who were asymptomatic at last follow-up.

Outline

- Overview on anatomy and physiology
- Etiology of VFI
- Diagnostic evaluation
- Management
- Take home messages

Changing What's Possible MUSCkids.org

31

Management

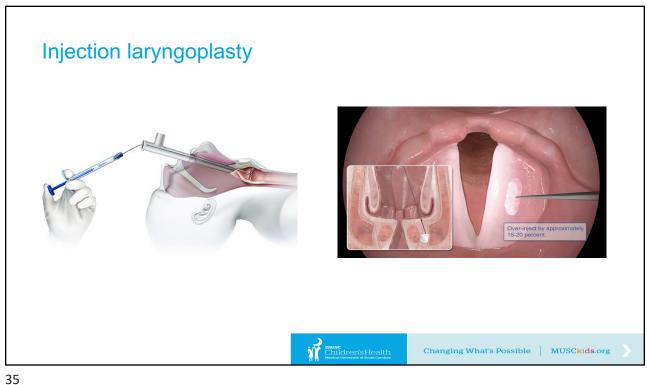
- Factors to be considered
 - ▶ Etiology of the paralysis
 - Prognosis
 - Unilateral or Bilateral
 - Severity of symptoms
 - Associated conditions

Unilateral VFP

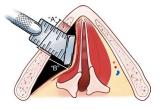
- **Speech therapy** is advocated as the first-line treatment
 - Limited reports on efficacy of speech therapy in the pediatric population
- Injection laryngoplasty provides an immediate and temporary solution to improve glottic closure
 - May need multiple periodic injections

Changing What's Possible | MUSCkids.org

33


Injection laryngoplasty

- Prevent the risk of chronic aspiration and feeding tubes
- Different types injectables
 - Gelfoam
 - Collagen
 - Calcium Hydroxyapatite
 - Carboxymethylcellulose
 - Autologous fat



Changing What's Possible MUSCkids.org

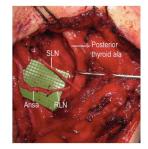
Laryngeal framework surgery

- ▶ More permanent solution in patients with poor VF mobility prognosis
- Medialization thyroplasty vs. arytenoid adduction

Changing What's Possible | MUSCkids.org

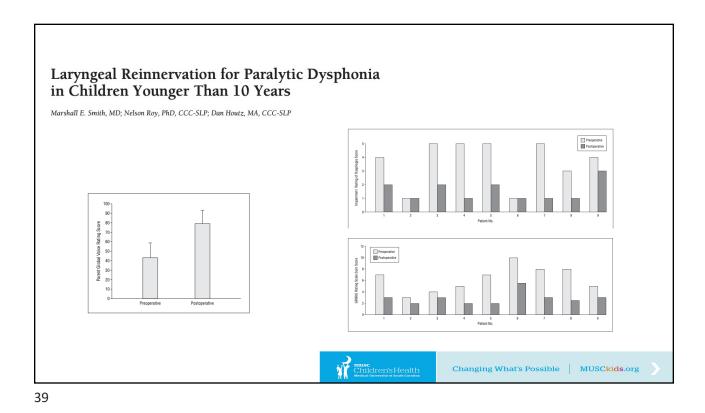
Laryngeal reinnervation

- Offers a permanent solution
 - ▶ No foreign body implant
 - Consistent outcomes
- → Helps medialize the the vocal fold
- → Prevents atrophy of laryngeal muscles
- → Improves the tone of the affected VF
- Ansa cervicalis to RLN (Crumley 1991)
- NMP implantation into adductor laryngeal muscles (Goding 1991)


Changing What's Possible MUSCkids.org

37

Laryngeal reinnervation



Chhetri et al. 2012

musc Children's Health

Changing What's Possible | MUSCkids.org

Bilateral vocal fold paralysis

- ▶ The primary goal is to relieve airway obstruction
- ▶ In earlier studies → tracheostomy was the standard of care
- Prior to decision
 - ▶ Evaluate the cause of the VFP
 - Assess the patient for sleep apnea, lung disease of prematurity, GER
 - Assess neurologic status and swallowing
 - Severity of airway obstruction and work of breathing

Tracheostomy

- A safe surgical step for BVFP
- Potentially reversible procedure
 - Maintains a stable airway
 - Possible spontaneous recovery
- Repeat examinations to detect return of function and plan future interventions

Changing What's Possible MUSCkids.org

41

Tracheostomy

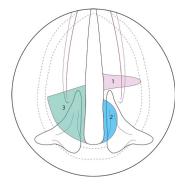
- Speech acquired by means of a speaking valve or by covering the tracheotomy tube with the chin
- Removal of the tracheostomy is often desirable before children start attending school
- Parents should understand the trade-offs involved when opting for surgical intervention
 - Sacrifice voice
 - Sacrifice swallowing

Changing What's Possible MUSCkids.org

Static procedures

- Improve airway patency by enlarging the glottic aperture
 - Excising laryngeal tissue
 - Fixation techniques
 - Combination
- Woodman procedure in 1946
 - ▶ 20-40% decannulation failure with external approaches (Lim 1985, Ossoff et al. 1990)
- ▶ Thornell introduced endoscopic arytenoidectomy in 1952

Changing What's Possible MUSCkids.org


43

Static procedures

- Development of the CO2 laser provided new possibilities
 - Posterior cordotomy
 - Arytenoidectomy
- Improved outcomes and decannulation rate

Changing What's Possible | MUSCkids.org

Laser cordotomy for the treatment of bilateral vocal cord paralysis in infants

Aude Lagier, Richard Nicollas*, Mélanie Sanjuan, Lafont Benoit, Jean-Michel Triglia

- ▶ 11 patients < 2 years old with bilateral VFP
 - 4 needed a tracheostomy
- Laser posterior partial cordotomy
 - ▶ Decannulation after 1 session (n=2)
 - Avoided tracheostomy (n =5)
 - ▶ Repeat cordotomy followed by decannulation (n=2)

Need for second procedure due to scarring and granulation

International Journal of Pediatric Otorhinolaryngology

Changing What's Possible | MUSCkids.org

45

Posterior cricoid split with rib graft

- Posterior enlargement of the interarytenoid space
 - Laryngofissure vs endoscopic
- 28.6% decannulation with endoscopic technique (Inglis et al. 2017)
- Risk of dysphagia and tracheostomy
- Variation with AP cricoid split

Changing What's Possible | MUSCkids.org

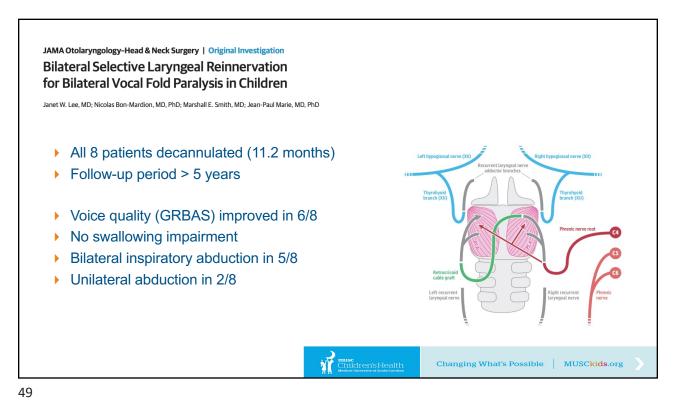
Laryngeal chemodenervation

Airway Augmentation and Maintenance Through Laryngeal Chemodenervation in Children With Impaired Vocal Fold Mobility

Marshall E. Smith, MD; Albert H. Park, MD; Harlan R. Muntz, MD; Steven D. Gray, MD†

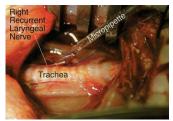
- Botulinum toxin A injections for airway augmentation
 - ▶ TA injection more effective than CT muscle
- Treated 10 bilateral VFP pediatric patients
 - ▶ Helpful in providing a better airway in 4/10 patients
 - ▶ 50% received injections every 6-12 months
- Favorable candidates
 - Marginal airway obstruction attempting decannulation
 - Recurrent exertional stridor following decannulation

Changing What's Possible MUSCkids.org


47

Laryngeal reinnervation

- Considered the ideal form of rehabilitation for bilateral VFP to reanimate the vocal
- Goal is to restore both abductor and adductor movements
- No mucosal incision and no disruption of the laryngeal framework
 - Reduced risk of scarring
 - Potential improvement in swallowing and voice outcomes
- Different methods described
 - ▶ Phrenic RLN
 - ▶ Phrenic PCA muscle
 - Omohyoid NMP



Changing What's Possible MUSCkids.org

Future directions

- Induced pluripotent stem cells in rats (Dirja 2016)
 - ▶ Adipose derived stem cells (Nishio 2016)
 - ▶ Olfactory ectomesenchymal stem cells (Saïd 2019)
- ▶ Gene therapy (Bijangi 2016) (Rubin, 2003) (Heavner, 2007)

Rubin 2001

Changing What's Possible | MUSCkids.org

Take Home Messages

- Vocal fold immobility is a sign and NOT a diagnosis
- ▶ Diagnosis and treatment of pediatric VFP should be carried out with special consideration of postnatal development of the laryngeal framework and special attention to the patient's predominating symptoms and age

51

References

- Sataloff, R. T. (2015). Sataloff's Comprehensive Textbook of Otolaryngology: Head & Neck Surgery: Pediatric Otolaryngology (Vol. 6). JP Medical Ltd.
- Jabbour, J., Martin, T., Beste, D., & Robey, T. (2014). Pediatric vocal fold immobility: natural history and the need for long-term follow-up. *JAMA Otolaryngology–Head & Neck Surgery*, 140(5), 428-433. Smith, M. E., Park, A. H., Muntz, H. R., & Gray, S. D. (2007). Airway augmentation and maintenance through laryngeal chemodenervation in children with impaired vocal fold mobility. *Archives of Otolaryngology–Head & Neck Surgery*, 133(6), 610-612.
- Lagier, A., Nicollas, R., Sanjuan, M., Benoit, L., & Triglia, J. M. (2009). Laser cordotomy for the treatment of bilateral vocal cord paralysis in infants. *International journal of pediatric otorhinolaryngology*, 73(1), 9-13. Lee, J. W., Bon-Mardion, N., Smith, M. E., & Marie, J. P. (2020). Bilateral selective laryngeal reinnervation for
- bilateral vocal fold paralysis in children. JAMA Otolaryngology-Head & Neck Surgery, 146(5), 401-407.
- Zbar, R. I., Chen, A. H., Behrendt, D. M., Bell, E. F., & Smith, R. J. (1996). Incidence of vocal fold paralysis in infants undergoing ligation of patent ductus arteriosus. *The Annals of thoracic surgery*, *61*(3), 814-816.
- Zbar, R. I., & Smith, R. J. (1996). Vocal fold paralysis in infants twelve months of age and younger. *Otolaryngology–Head and Neck Surgery, 114*(1), 18-21.

 Deshpande, A., Tey, C. S., Chanani, N., Landry, A., Raymond, M., Sebelik, M., ... & Raol, N. (2021). The utility of handheld ultrasound as a point-of-care screening tool to assess vocal fold impairment following congenital heart surgery. *International Journal of Pediatric Otorhinolaryngology, 148*, 110825.
- Hamilton, C. E., Su, E., Tawfik, D., Fernandez, E., Veten, A., Conlon, T., ... & Haileselassie, B. (2021). Assessment of Vocal Cord Motion Using Laryngeal Ultrasound in Children: A Systematic Review and Meta-Analysis. *Pediatric Critical Care Medicine*, 22(10), e532-e539.
- Trozzi, M., Meucci, D., Salvati, A., Tropiano, M. L., & Bottero, S. (2020). Surgical options for pediatric bilateral vocal cord palsy: state of the art. *Frontiers in Pediatrics*, 817.

Changing What's Possible MUSCkids.org