

Disclosures

- Financial: Employee of The Medical University of South Carolina-Department of Otolaryngology and Head & Neck Surgery and receive a salary for my role as such. I have no other relevant financial relationships to disclose.
- Non-Financial: I have no relevant non-financial relationships to disclose.

Hearing Loss Facts

- Hearing loss present in 2-3 out of 1000 births
 - ▶ 20-30% of congenital hearing loss is in the profound range
- ▶ 14.9% of children between the ages of 6-19 years old have hearing loss
- 18.4% of children diagnosed with hearing loss at birth are lost to follow up and do not receive early intervention services
- Care providers and the educational team are pivotal in identifying children who might not be receiving appropriate services or technology

(Nassiri et al., 2022)

Changing What's Possible MUSCkids.org

3

Cochlear Implant Barriers to Care

- Current CI utilization ranges from 2.1% to 12.7% (Nassiri et el., 2022)
- Indications for cochlear implantation are expanding
- Whv??
 - Misconceptions about CI
 - · Patient/family education on options for hearing loss

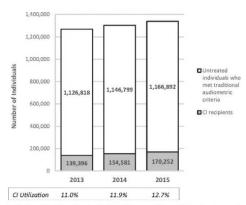


FIG. 1. Cochlear implant utilization over time. Patients who met traditional audiometrie criteria for CI during the study period (2013-2015) are represented.

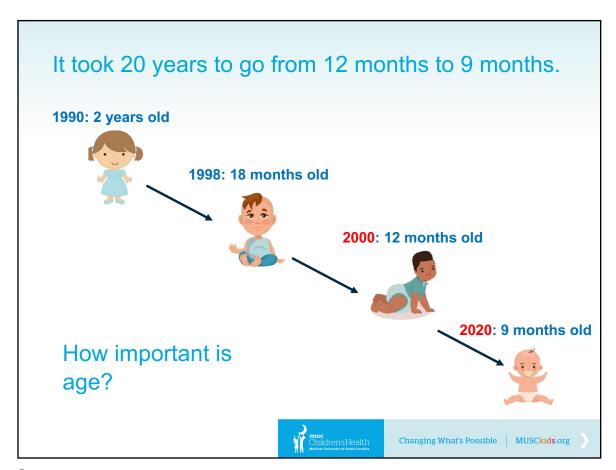
Historic FDA labeling 1990: 2 years old

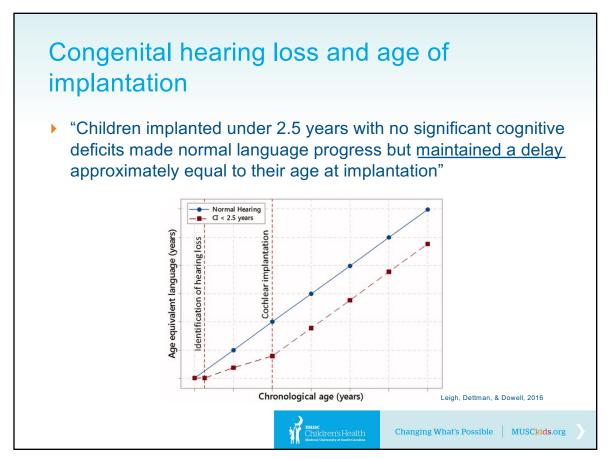
2000: 12 months old

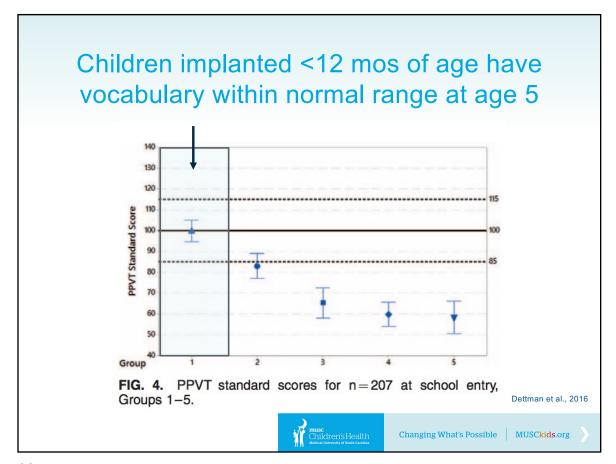
2020: 9 months old

Historic FDA labeling

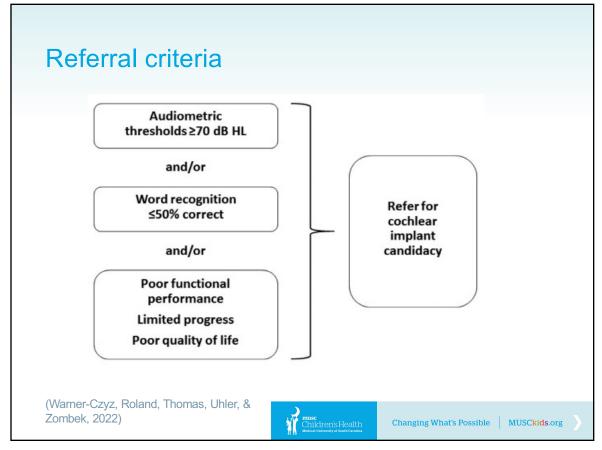
- Over the past 20+ years, considers children who generally:
 - Have bilateral severe-to-profound sensorineural hearing loss
 - Over 12 months old
 - Have no greater than 20-30% word recognition score
- Outdated! Patients are implanted outside of these criteria who benefit from cochlear implantation


Changing What's Possible MUSCkids.org


7


Recent Advancements

- Single-Sided Deafness
 - July 2019- Med-El approved for SSD for patients > 5 years old
 - January 2022- Cochlear approval
- Advancements help pave the way to expanded criteria
- Insurance companies often have different criteria!
- ▶ We often implant younger than 5 years of age with insurance approval (the sooner the better!)



Special Considerations

- Anatomy
 - Cochlear nerve deficiency (CND)
 - Variable spoken language outcomes (Birman et al., 2016)
 - Aplasia: 47%; Hypoplasia: 89%
 - Cochlear malformations:
 - ▶ IP2/Enlarged vestibular aqueduct (EVA) outcomes comparable to normal cochlea (N Schwartz et al., 2020)
 - Other malformations are variable
- Asymmetric/residual hearing
 - Do not need to be completely 'deaf' in both ears
- Comorbidities
 - > ~40% of children with hearing loss have additional disabilities or comorbidities
 - Families have reported improved interactions (Wiley et al., 2005) and less familial stress (Oghalai et al., 2012)

Single Sided Deafness (SSD)

- ▶ FDA approved for age 5 or older
 - Outdated- Implanting off-label using >9 months criteria
- Important Factors
 - ▶ Imaging: ~30% of children with congenital SSD have CND (Vos et al 2022)
 - Duration of deafness
- Common themes
 - Improved localization and attention
 - Longer periods of auditory depravation (6-11 years) limit speech understanding
 - Less report of benefit by individuals
 - ▶ Feel sound as pressure rather than hearing it

Changing What's Possible MUSCkids.org

17

Part Five

The cochlear implant evaluation process

The Process

- **General History**
- Audiologic evaluation
 - Unaided and aided responses
- Questionnaires
 - ► LittlEars, ASQ, Sensory Profile, SSQ, etc.
- Speech and language evaluation
- Medical evaluation
 - Imaging, other comorbidities
- Other referrals
 - Developmental pediatrics, PT, OT, genetics, vestibular testing, etc.

- ▶ Counseling → Candidacy
 - Review Cl vs HA
- Realistic expectations
 - Communication options
 - Not a quick fix
 - Intensive therapy
 - ▶ Full-time use

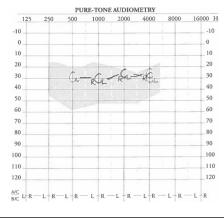
Changing What's Possible MUSCkids.org

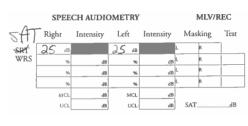
19

Part Six

Cases

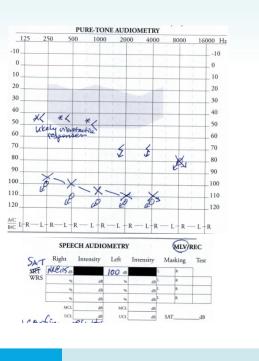
- Born full-term
- Did not pass newborn hearing screen
- No family hx of HL
- Diagnostic ABR at 3 months old suggested bilateral severe/profound hearing loss
- Enrolled in early intervention
- Fit with hearing aids at 5 months old
- Genetic testing- Connexin 26


21


Case Example #1

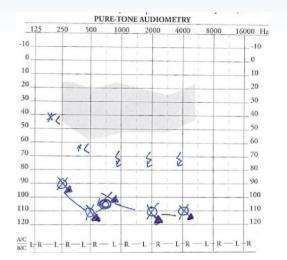
- Speech and language evaluation
 - Severe expressive and receptive language delays secondary to his hearing loss
 - Begin speech therapy
- Implanted at 11 months old!

- 22 months
- Wear time: 6-7 hrs/day
- Speech Therapy 1x/week with AVT
- 6-month speech evaluation: borderline average range for expressive and receptive skills



Changing What's Possible MUSCkids.org

23


Case Example #2

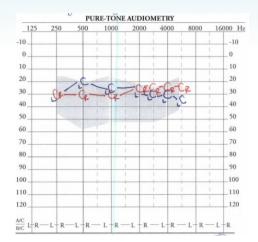
- Born full-term without complications
- Did not pass NBHS
- Birth parents both Deaf and are fluent in ASL
- Waardenburg syndrome
- First visit at 12 months old
- Chose to not implant or aid with acoustic hearing aids

- Next seen ~2.5 y/o
- With great aunt and uncle (legal guardians)
- Guarded expectations for spoken language development due to:
 - Age
 - No auditory input for ~ 3
- First implant at 2.5 y/o

Changing What's Possible MUSCkids.org

25

Case Example #2


- Speech evaluation 2 years postimplant (4.5 y/o):
- Speech evaluation 3.5 years post-implant (6 y/o) after intensive and consistent therapy:
- Receptive: 1 year 10 months Receptive: 3 years 9 months
- Expressive: 1 year 9 months Expressive: 2 years 7 months

In 17 months:

- 23 months of progress in his auditory comprehension
- 10 months of progress in expressive language using spoken language

- 7 years old
- Wears 10-11 hours/day!
- Uses total communication
 - ▶ ASL interpreter in school
 - Private and school speech therapy
- Spoken word understanding limited (50%) and delayed
- Second CI
 - Guarded expectations again, even longer period of auditory depravation

Changing What's Possible MUSCkids.org

27

There are no inappropriate referrals for a Cl.

If a patient does not meet candidacy criteria, the evaluation will provide an opportunity for counseling and a baseline for monitoring progression." (Warner-Czyz, et al., 2022)

References

- Auditory Evoked Potentials (AEP) [Photograph]. (n.d.). Vivosonic.
 Blamey, P., Sarant, J. Z., Paatsch, L. E., Barry, J. G., Bow, C. P., Wales, R. J., Wright, M., Psarros, C., Rattigan, K., & Tooher, R. (2001).
 Relationships among speech perception, production, language, hearing loss, and age in children with impaired hearing. Journal of Speech, Language, and Hearing Research, 44(2), 264–285. https://doi.org/10.1044/1092-436812001022.
- Center for Hearing and Speech and Texas Children's to collaborate on pediatric hearing services hub [Photograph]. (n.d.). Texas Medical Center, Houston.
- Dettman, S. J., Dowell, R. C., Choo, D., Arnott, W., Abrahams, Y., Davis, A., . . . Briggs, R. J. (2016). Long-term communication outcomes for children receiving cochlear Implants younger than 12 months: A multicenter study. *Otology & Neurotology*, *37*(2). doi:10.1097/mao.000000000000915
- Geers, A. E. (2004), Speech, language, and reading skills after early cochlear implantation. *Archives of Otolaryngology—Head & Neck Surgery*, 130(5), 634. https://doi.org/10.1001/archotol.130.5.634
- Hearing Tests for Babies and Children [Photograph]. (n.d.). Fairview.

- Treaming Tests to Bables and Children [Finologiaph], (in.d.). I an wew.

 Iowa Ear Center Cochlear Implant Program [Photograph], (in.d.). Iowa Ear Center, Clive.

 Kanso 2 recipient [Photograph], (in.d.). Recipient photos, Cochlear Americas, Lone Tree.

 Kuhl, P. K. (2000). A new view of language acquisition. Proceedings of the National Academy of Sciences, 97(22), 11850–11857.

 https://doi.org/10.1073/pnas.97.22.11850
- Leigh, J. R., Dettman, S. J., & Dowell, R. C. (2016). Evidence-based guidelines for recommending cochlear implantation for young children: Audiological criteria and optimizing age at implantation. *International Journal of Audiology*, 55(Sup2). doi:10.3109/14992027.2016.1157268

- Making the Cochlear Connection in Class [Photograph]. (2017, July 1). The ASHA Leader.

 New study shows value of early cochlear implant use for deaf children) [Photograph]. (n.d.). Keck Medicine of USC.

 Nassiri, Ashley M.*. Sorkin, Donna L.†; Carlson, Matthew L.*. Current Estimates of Cochlear Implant Utilization in the United States. Otology & Neurotology 43(5); p. 658–6562, June 2022. | Dol: 10.1097/MAC.00000000003131

 Pediatric Hearing Impaired Program [Photograph]. (n.d.). Columbia University, New York City.

 PET-MRI Scan [Photograph]. (n.d.). Golisano Children's Hospital URMC, Rochester.

- Picard, M., & Bradley, J. S. (2001). Revisiting speech interference in classrooms. Audiology, 40(5), 221–244.
- Schwartz, Nofrat; Brown, Kevin D.; Park, Lisa R.. Audiologic Outcomes of Cochlear Implantation in Cochlear Malformations: A Comparative Analysis of Lateral Wall and Perimodiolar Electrode Arrays. Otology & Neurotology 41(10):p e1201-e1206, December 2012 | 1201-e1206 | 1201-e120
- 2020. | DOI: 10.1097/MAO.0000000000002833
 Teresa G. Vos, Lisa R. Park, Amy S. Noxon, Kevin D. Brown; Cochlear Nerve Deficiency in Pediatric Unilateral Hearing Loss and Asymmetric Hearing Loss. *Audiol Neurotol* 19 July 2022; 27 (4): 328–335. https://doi.org/10.1159/000522566

Changing What's Possible MUSCkids.org

29

Contact us!

Program Coordinator: Elise Wilson

Email: ciprogram@musc.edu

Phone: 843-876-1308 Fax: 843-876-0360

