
revealed no difference between the three age groups with
respect to the total population and the groups with or without
rituximab. The hazard ratios (HR) between all age groups were
0.9–1.0 for EFS and 1.1–1.3 for OS, which were not significantly
different in all patients and patients treated with or without
rituximab. In a multivariate analysis of the treatment given
(etoposide and/or rituximab), adjusted for aaIPI risk factors, bulky
disease, extranodal involvement 41 and three age groups, which
was performed separately for 154 patients from the NHL-B1 trial
(CHOEP-14/21 vs CHOP-14/21) and 206 patients from the
MINT trial (CHO(E)P-21 ± R), we confirmed that the administration
of etoposide (HR = 0.4 with 95% confidence interval (CI) (0.2; 0.7),
P= 0.003) in the NHL-B1 trial and rituximab (HR= 0.4 with 95% CI
(0.2; 0.7), P= 0.003) in the MINT trial improved EFS in this
AYA population. The administration of rituximab improved also,
but not significantly, the OS (HR= 0.4 with 95% CI (0.1; 1.1),
P= 0.075) in the MINT trial. In conclusion, age up to 35 years was
not a risk factor in trials that included young adults aged 18–35
years with aggressive lymphoma treated with CHOP-like regimens
with and without rituximab. The EFS and OS results were excellent
and were in a range comparable to those achieved using pediatric
BFM-type protocols.1 Therefore, young adults have an excellent
outcome when treated with protocols developed for adults. Our
data do not support the use of more aggressive protocols used by
pediatric oncologists in this age group outside clinical trials.
Currently, trials proposed by a European network compare both
approaches only in selected ALCL subtypes in patients up to 30
years. We conclude that a prospective comparison of established
but rather complicated and more toxic pediatric protocols
with the R-CHO(E)P regimen is highly warranted in the AYA
age group.
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High-throughput drug screening identifies compounds
and molecular strategies for targeting proteasome
inhibitor-resistant multiple myeloma
Leukemia (2014) 28, 2263–2267; doi:10.1038/leu.2014.214

Proteasome inhibitors (PI) are a cornerstone in the treatment
of multiple myeloma (MM).1 Despite high initial response rates,

nearly all MM patients relapse, marking the incurable
nature of the disease and the emerging clinical challenge of
combating PI resistance. This has created a need for drug
discovery approaches that identify new drug cocktails of PIs,
such as bortezomib/VELCADE (Btz; Millennium Pharmaceuticals,
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Inc., Cambridge, MA, USA), and other classes of FDA-approved or
investigational new drugs. With these objectives in mind, we set
out in this study to develop a high-throughput drug screening
(HTS) platform to identify chemical structures that selectively kill
or re-sensitize PI-resistant MM cells to PIs.
We established a cell-based drug screening assay that incorpo-

rated isogenic pairs of Btz-sensitive (BzS) and Btz-resistant (BzR)
mouse and human MM cells, which have been described previously2

and exhibit an approximate 5–7-fold difference in sensitivity to Btz
(Supplementary Figure S1).3 Each plate of library compounds was
tested against a plate containing BzS cells, one containing BzR cells,
and a third containing BzR cells in the presence of Btz. Cell viability
was used as the assay read-out to measure the effects of screened
compounds on cell survival and proliferation (Figure 1a and
Supplementary Figure S2). It is important to note that the inclusion
of the three cell groups allowed us to calculate the relative effects of
drugs, and thus identify the structures with selective activity against
the resistant cells as single agents or those with the ability to restore
Btz sensitivity, rather than those with general cytotoxicity in vitro
(Figures 1a and b). To demonstrate the utility of this HTS assay in
practice, we conducted a pilot round of screening using the NCI
Diversity Set II (NCI Developmental Therapeutics Program) of ~ 1600
small molecules chosen for their core structural diversity and
favorably predicted drug-like qualities. In total, our primary screen-
ing identified 12 compounds with activity against any of the
treatment groups (Supplementary Table S1). Of greater significance,
four of the hits showed reproducibly greater activity against BzR
cells as single agents or restored sensitivity to Btz in BzR cells when
co-treated with Btz. We elected to further pursue compound
NSC622608, which we named Velcade Re-sensitizing Compound 2
(VRC2), due to its unknown and potentially novel molecular target/
mechanism of action and its ability to synergize with Btz and reverse
the resistance phenotype in vitro (Figure 1c). We investigated the
activity of VRC2 in combination with the other PIs that have
been approved for MM (carfilzomib) or are in clinical develop-
ment (MLN2238). Comparable to what we observed with Btz,
VRC2 restored sensitivity to these next- generation PIs in a panel

of mouse and human BzR cell lines (Figure 1d). This synergy
appeared to be specific for PIs, as VRC2 failed to enhance the
sensitivity of MM cells to other classical MM agents including,
the glucocorticoid dexamethasone (Figure 1d).
To identify the potential molecular targets of VRC2, we used a

combination of data mining and chemical genomics approaches.
First, we screened the NCBI PubChem Bioassay Database for
published drug screening results that reported VRC2 as a positive
hit. We found one report of VRC2 activity against wild-type and
mutant forms of the murine double minute 2 (MDM2) E3 ligase, a
known regulator of TP53 (p53) activity (PubChem BioAssay
identifiers AID: 1442 and 1444 from the Penn Center for Molecular
Discovery; Ref. ‘A’ and ‘B’).4,5 Our genomic studies, in which we
used kinetic gene expression profiling (GEP) to characterize the
gene networks that were induced or repressed following VRC2
treatment, further implicated the p53 pathway as a mechanism of
VRC2 action. In human MM.1S BzR cells, kinetic VRC2 pathway
analysis showed a strong p53 activation signature (z= 2.078;
P= 2.39 × 10− 8 by Fisher's Exact Test) (Ingenuity Pathway
Analysis), which was driven by the upregulation of MT1H, HMOX1
and ANXA2 and downregulation of POLD2, MCM5, MCM4,
MCM3, MCM2, KIAA0101 and CCNA2 following VRC2 treatment
(Figure 2a and Supplementary Figure S3). Notably, this p53
activation signature was absent in U266 BzR cells, which express
an inactivating p53 mutation at codon 161 (Figure 2a).6 Consistent
with the predicted effects of an MDM2 inhibitor, VRC2 increased the
expression of p53 in a dose- and time-dependent manner in wild-
type p53-expressing MM cell lines (Figure 2b and Supplementary
Figure S4A), and induced the expression of p53 target genes P21,
PUMA and NOXA (Figure 2c and Supplementary Figure S4B). These
mechanistic findings suggested that invoking the p53 pathway by
means of MDM2 inhibition is a promising molecular strategy to
overcome PI resistance in MM cells. Indeed, when we combined
Btz with Nutlin3a, a quintessential MDM2 inhibitor in clinical
development,7 we detected statistically significant synergy in two
resistant clones derived from wild-type p53 expressing MM.1S BzR
cells (Figure 2d and Supplementary Figure S5A). Interestingly, we

Figure 1. HTS platform for discovering PI-sensitizing compounds. (a) The schema shown outlines the flow of drug library screening and
follow-up data mining and chemical genomics approaches that were used to identify the molecular mechanism of action of confirmed hits.
The cell-based assay was adapted for high throughput multi-well format and made use of isogenic pairs of PI-sensitive and -resistant mouse or
human cell lines that were established by our group and described previously. Library compounds were screened against three groups of
cells: (1) PI sensitive; (2) PI resistant; and (3) PI resistant in the presence of 20 nM Btz, a concentration that is highly toxic to sensitive, parental
cells but ineffective against the PI-resistant population. The bioluminescence-based Cell TiterGlo (Promega Corporation, Fitchburg, WI, USA)
cell viability assay was chosen as the HTS read-out due to the high sensitivity and quantitative nature of this system. A Z’ factor of 0.49 was
calculated using Btz (20 nM) as a positive control and DMSO as a negative control in 595 BzS mouse MM cells. Compounds that exhibited
preferential killing of BzR cells compared to BzS cells and those that synergized with Btz in the BzR cells were selected for secondary screening
in panels of mouse and human BzR cells. Confirmed hits were then analyzed by chemical genomics to determine potential target pathways
and mechanisms of action. Additional mechanistic leads were acquired by searching the publicly available NCBI Bioassay Database for reports
of activity against known molecular targets in archived drug screening data sets. Identification of the drug molecular mechanism could be
used in the development of investigational new drugs, or matched to existing FDA-approved agents that could be expeditiously tested in
trials of refractory MM. In our study, the unknown compound, VRC2 (NSC622608), was presented and discussed as an example of a molecular
probe/tool compound that was discovered and characterized using this platform and then used to implicate a developmentally advanced
drug candidate (i.e., Nutlin3a). (b) Raw HTS data from a representative plate (NCI Diversity Set II plate number 4662) are shown. The data
points from individual compounds that would have been selected as positive hits are denoted by numbers 1–4. Compounds 1, 2 and 4 show
general cytotoxic activity as these chemical structures target BzS and resistant BzR cells without selectivity. By comparison, hit number 3
would have been given priority in follow-up studies due to its greater potency for killing the BzR cells and ability to re-sensitize BzR cells to Btz.
The precise chemical identity of hit number 3 is camptothecin, a known topoisomerase inhibitor. The full list of positive hits from the primary
screening is found in Supplementary Table S1. (c) The chemical structure of the experimental compound VRC2 is shown. In secondary layers of
screening, a dose range of VRC2 was used to treat 595 BzS, 595 BzR and 595 BzR cells in the presence of Btz (25 nM). Normalized cell viability
data are shown. VRC2 reduced cell viability with equal potency in the BzS and BzR cells as a single agent; however, it showed robust synergy
when combined with Btz in BzR cells (blue dose-response curve). Note that because Btz alone had no effect on the viability of BzR cells, the
separation of the VRC2-alone curve and the combination curve is indicative of a superadditive/synergistic drug interaction. (d) Additional
follow-up experiments were conducted using panels of mouse (595 and 589) and human (MM.1S and U266) BzR cell lines along with the next-
generation PIs carfilzomib (Crflz) and MLN2238 (MLN). The indicated cell lines were treated with VRC2 (2.5 μM) and Btz (25 nM) or carfilzomib
(25 nM) or MLN2238 (55 nM), alone or in combination. Cell viability data are shown (*Po0.01, N= 3). We detected no synergy between VRC2
and the glucocorticoid dexamethasone (Dex; 10 μM).
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found that the combination of carfilzomib and Nutlin3a was highly
synergistic and significantly more robust than the combination with
Btz (Figure 2d and Supplementary Figure S5A). While the addition
of Nutlin3a to Btz treatment increased the percentage of apoptotic
cells by 8–10% (P=0.05, N=4), the combination of Nutlin3a and
carfilzomib increased apoptosis by 35–45% (P=0.004, N= 4;
Figure 2e). Similar results were observed using resistant mouse
cell models 595 BzR (Supplementary Figure S5B) and 589 BzR
(data not shown), both of which express wild-type p53.2 In mutant

p53-expressing U266 BzR cells, synergy between Nutlin3a and PIs
was also evident, albeit requiring higher concentrations of Nutlin3a
(Figure 2f), and, consistent with the wild-type p53 models, the
synergy was more pronounced with carfilzomib than Btz.
In this study, we have described and implemented a cell-based

HTS platform for discovering the drugs and molecular mechanisms
that specifically target treatment-resistant MM cells. The cell-
based approach is advantageous for two reasons. First, given the
multiple known and unknown mechanisms by which cells acquire
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Figure 2. Chemical genomic screening identifies MDM2 inhibition as a promising molecular strategy for overcoming PI resistance in MM cells.
(a) Human MM.1S BzR cells were treated with a fixed dose of 300 nM VRC2 and collected for gene expression analysis at 0, 8 and 24 h following
treatment. The kinetic gene expression patterns of all genes showed evidence of p53 pathway activation by the downstream profiles of the 17
genes shown in the heatmap (Ingenuity Pathway Analysis). Similar experiments were conducted using mutant p53-expressing U266 BzR cells,
and as expected, the p53 pathway activation signature was absent in these p53-deficient cells. (b) VRC2 induces molecular effects that are
characteristic of MDM2 inhibition. Wild-type p53-expressing MM.1S BzR cells were treated with 500 nM VRC2 for the indicated time points (top) or
treated with increasing concentrations of VRC2 (0, 0.125, 0.25, 0.5, 1.0, 2.0 μM) for a fixed time point (4 h). Western blots are shown. CPT-11 (33 μM)
and Nutlin3a (5 μM) were included as positive controls. (c) MM.1S BzR cells were treated with VRC2 (500 nM), Nutlin3a (5 μM) or CPT-11 (33 μM) for
4 h. qPCR analysis was conducted for the indicated p53 target genes. (d) Resistant MM.1S BzR cells were treated with a dose range of Btz (top) or
Crflz (bottom) for 24 h in the presence or absence of Nutlin3a (5 μM). Cell viability data are shown. There was no effect of single agent Nutlin3a at
this time point and therefore any separation of the curves indicates a synergistic drug interaction. Parental MM.1S cells, which are highly sensitive
to Btz and Crflz, are shown for comparison. (e) MM.1S BzR cells were treated with Btz (25 nM) or Crflz (25 nM) as single agents and in combination
with Nutlin3a (5 μM). Cells were treated for 24 h, then fixed and stained for cleaved/active caspase-3 (CC3), and the percentage of CC3-positive
(CC3+) cells were quantified by flow cytometry. Parental/sensitive MM.1S cells are shown for comparison (*Po0.01 by t-test, N=4). (f) Resistant
U266 BzR cells were treated with a dose range of Btz (top) or Crflz (bottom) for 24 h in the presence or absence of 10 μM Nutlin3a (N10) or 30 μM
Nutlin3a (N30). Cell viability data are shown. There was no effect of single-agent Nutlin3a at this time point and therefore any separation of the
curves indicates a synergistic drug interaction. Parental U266 cells, which are highly sensitive to Btz and Crflz, are shown for comparison.
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resistance to PIs,8–10 a cell-based approach removes molecular
bias. Second, the use of isogenic BzS and BzR cell models provides
a relative assessment of cytotoxicity and the opportunity to
identify compounds that selectively target PI-resistant popula-
tions. As proof of concept, we conducted a small-scale drug screen
from which we identified VRC2, a compound with the ability to
restore PI sensitivity to resistant MM cells. While VRC2 is not an
ideal candidate for further development due to characteristics that
predict unfavorable physiochemical properties (that is, furan and
diathiazol toxicophores, a high number of hydrogen bond
acceptors at 13, and predicted high clearance risk), in our study,
it effectively served as a molecular probe to demonstrate the
utility of coupling HTS with other approaches such as chemical
genomics to pinpoint molecular mechanisms and therapies that
are already approved for clinical use or are in human trials. Our
investigation into the mechanism of VRC2 implicated MDM2
inhibition and p53 pathway activation as molecular strategies for
targeting PI-resistant cells, findings that directed us toward the
more clinically advanced MDM2 inhibitor, Nutlin3a. MDM2
inhibition has been shown by others to enhance the activity of
Btz,11–13 which supports the ability of our method to identify bona
fide druggable mechanisms for overcoming PI resistance. Our
study further demonstrates that Nutlin3a not only augments the
cytotoxic activity of Btz in Btz naive cells, but can also restore
sensitivity to Btz once MM cells have acquired therapeutic
resistance. It is also noteworthy that we found the combination
of Nutlin3a/carfilzomib to be substantially more synergistic than
Nutlin3a/Btz, findings that require further investigation but carry
potentially significant translational implications. The mechanistic
basis for this difference is not clear, however, it may be explained
by the known differences in binding kinetics between the two
PIs—inhibition of the 26S proteasome by Btz is reversible, whereas
carfilzomib binds irreversibly. In summary, this proof-of-concept
work validates the utility of our HTS approach for discovering lead
compounds and uncovering molecular mechanisms for targeting
PI-resistant MM, and provides a platform and the impetus for
larger-scale screening efforts.
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Does ruxolitinib improve survival of persons with
MPN-associated myelofibrosis? Should it?
Leukemia (2014) 28, 2267–2270; doi:10.1038/leu.2014.220

JAK2-activating mutations are linked to development of myelo-
proliferative neoplasms (MPNs), a discovery that revolutionized
the therapy of persons with MPN-associated myelofibrosis.
Targeting the JAK/STAT pathway with ruxolitinib, a JAK1/JAK2

inhibitor, suppresses heamatopoiesis and pro-inflammatory cyto-
kines, reduces splenomegaly and disease-related symptoms.1–4

These effects are not specific for the neoplastic clone and the
response rates are similar in persons with and without the
JAK2V617F and other JAK2 mutations.5 Based on these data,
ruxolitinib was approved by the US Food and Drug Admini-
stration (FDA) for therapy of splenomegaly in persons with
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