Medical Cannabis for Children

Bonni S. Goldstein, MD
Medical Director
Canna-Centers Wellness & Education

MUSC 2nd Annual Update on Medical Cannabis
September 27, 2019
Bonni S. Goldstein, MD

CA Licensed 28 years

Trained at Childrens Hospital Los Angeles (CHLA)

Chief Resident CHLA

Critical Care Transport Physician

Pediatric Emergency Medicine LA County/USC

Medical Director of Canna-Centers since 2008

Over 10,000 patients treated including ~900 children

No conflicts to report
Opened in 2008 in Los Angeles

- ~ 250 patient visits per month
- ~ 50+ new patient inquiries per month
- Youngest patient 6 weeks, oldest 100 years
- ~ 85% already tried conventional meds

Educational Program offering Seminars/Webinars for:

- Healthcare professionals/
- Patients
- Cannabis Industry
- Law enforcement
- Social Workers
Cannabis Research

Number of publications in PubMed between 1960-2014 related to cannabis research

Hurd, et al, 2015
Endocannabinoid deficiency/dysfunction has since been implicated in the following medical conditions:

- Migraine headaches
- Fibromyalgia
- Multiple Sclerosis
- Irritable Bowel Syndrome
- Schizophrenia
- Huntington’s disease
- Autism Spectrum Disorder
- Anorexia
- Chronic motion sickness
- Seizure Disorders
- Anxiety
- Depression
- Parkinson’s disease
- ADD/ADHD
- Failure to Thrive/obesity
Plasma anandamide concentrations are lower in children with autism spectrum disorder
Molecular Autism, Brain, Cognition and Behavior 2018 9:18
https://doi.org/10.1186/s13229-018-0203-y | © The Author(s): 2018

Emerging Role of (Endo)Cannabinoids in Migraine
Pinja Lelimaranta, Leonard Khinou and Rashid Ginatulullin
1 A. Viitanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
2 Neurilab Ltd, Helsinki, Finland
3 Neuroscience Center, University of Helsinki, Helsinki, Finland
4 Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia

Cellular and Molecular Life Sciences
August 2018, Volume 75, Issue 15, pp 2793-2811 | Cite as
Control of excessive neural circuit excitability and prevention of epileptic seizures by endocannabinoid signaling
Authors
Yuuki Sugaya, Masanobu Kano

Perspective Article
The endocannabinoid system as a possible target to treat both the cognitive and emotional features of post-traumatic stress disorder (PTSD)
Viviana Trezza and Patrizia Campolongo

Review articles from the 5th International Meeting of the IASP Special Interest Group on Neuropathic Pain (NeuPSIG)

The endocannabinoid system and neuropathic pain
Rafael Maldonado*, Josep Eladi Barons, David Cabañero
<table>
<thead>
<tr>
<th>Cannabinoid</th>
<th>Structure</th>
<th>Central Nervous System Targets</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ⁹-Tetrahydrocannabinol</td>
<td></td>
<td>CB₁R, CB₂R (microglia) TRPA₁ TRPV₂ TRPM₈ α₂β₂ γδ R 5-HT₁₆ R PPARγ GPR18 GPR55</td>
<td>Partial agonist Partial agonist Agonist Agonist Antagonist Enhancer Antagonist Activator Agonist Agonist</td>
</tr>
<tr>
<td>Cannabidiol</td>
<td></td>
<td>CB₁R, CB₂R (microglia) GPR55 TRPA₁ TRPV₁–₃ TRPV₄ TRPM₈ 5-HT₁₆ R 5-HT₁₆ R α₂β₂ γδ R PPARγ C₃ ion channel Adenosine reuptake</td>
<td>Antagonist Antagonist Antagonist Agonist Agonist Agonist Antagonist Enhancer Enhancer Activator Inhibitor Inhibitor</td>
</tr>
<tr>
<td>Cannabidivarin</td>
<td></td>
<td>TRPA₁ TRPM₈ TRPV₄ TRPV₁–₃ DAGL-α</td>
<td>Agonist Antagonist Agonist Agonist Agonist Inhibitor</td>
</tr>
</tbody>
</table>
Epilepsy and ECS dysfunction

Compelling scientific evidence of ECS dysfunction leads to seizures

• Epileptic human brain tissue shows 60% reduction of endocannabinoids (Ludanyi, et al. 2008)
• Blockage of the CB1 receptor produced status epilepticus (Wallace, et al. 2003, Deshpande, et al. 2007)
• CSF endocannabinoids reduced in patients with untreated newly diagnosed temporal lobe epilepsy (Romigi, et. al. 2010)

• Endocannabinoids play an intrinsic protective role in calming neuroexcitation

Devinsky et al. “Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders.” Epilepsia 55.6 (2014): 791-802
Epilepsy and Cannabinoids: Preclinical Evidence

CBD-enriched medical cannabis for intractable pediatric epilepsy: The current Israeli experience

20:1 CBD:THC ratio whole plant
- 74 patients, all resistant to >7 AEDs, 66% failed Keto/VNS/both
- CBD Dose 1-20 mg/kg/day
- 3-12 months of treatment

Overall 89% reported seizure reduction
- 1 patient became seizure free
- 5 patients withdrew due to SE

- Improved behavior, alertness, language, communication, motor skills, sleep
- Adverse side effects: increased sz (7%), fatigue/sedation, GI irritation

The current status of artisanal cannabis for the treatment of epilepsy in the United States

Dustin Sulak, Russell Saneto, Bonni Goldstein

- 272 combined patients from Washington and CA
- CBD +/- THC +/- THCA
- Beneficial SE:
 - Increased alertness
 - Better sleep
 - Improved mood
 - Less rescue medication used
 - Less ER/hospitalizations
- Adverse SE mild and infrequent - sedation

Overall 86% response rate
- Observational study of 108 pts

- The addition of CBD resulted in 39% of patients having a > 50% reduction in seizures, with 10% becoming seizure-free.

- CBD side effect: sedation (<4%)

- Benefits of increased alertness and verbal interactions more marked in CBD alone group
How does CBD work?

65 known molecular targets

Receptors:
- Cannabinoid
- Glycine
- GPR18
- GPR55 **
- 5HT1A/2A
- PPAR
- GABA **
- Adenosine

Transporters:
- Anandamide uptake **
- Dopamine uptake
- Glutamate uptake
- Choline uptake

Enzymes:
- CYP450
- AANAT
- COX/LOX
- Mitochondrial Electron Transport Chain

Ion Channels
- TRP Channels (TRP1-4, TRPM8)**
- VDAC, VGCC, VGSC **

AED - CBD Drug Interactions (Epidiolex studies)

- 39 adults + 42 children treated with CBD (5 → 50 mg/kg/day) with baseline AED levels, repeated at follow-up visits (Gaston, et al. 2018)
 - Increases in topiramate, rufinamide, N-CLB
 - Decrease in clobazam as CBD dose increased
 - In adults, zonisamide and eslicarbazepine increased
 - All increases were within accepted therapeutic range except clobazam and N-CLB
 - Increased liver function tests in patients on valproate

- 34 children with Dravet syndrome on pharmaceutical CBD tested before CBD and at 4 weeks (Devinsky, et al. 2018)
 - Increase clobazam metabolite (N-CLB)
 - No change in levels of valproate, levetiracetam, topiramate
 - 6 patients on both CBD and valproate had elevated liver function tests (recovered)
Current dosing: 550 mg CBD/day (9.8 mg/kg/day) plus 90 mg THC/day
Autism Spectrum Disorder

- Prevalence 1 in 59 (CDC)
- Often comorbid with epilepsy, anxiety, ADHD, depression

Main features include:
 - Communication difficulties
 - Repetitive behaviors
 - Social challenges (anxiety, tantrums, SIB)

- Neuro-inflammation & Neuro-immune abnormalities (Siniscalco, 2018)
- Gut issues 4 times more prevalent (McElhanon et al, 2014)
Autism Spectrum Disorder

Literature review:

- Case report of dronabinol in 6 year old boy: significantly decrease hyperactivity, irritability, lethargy, stereotypic movements and inappropriate speech on total daily dose of 3.6 mg (Kurz, et al, 2010)
- Link between two genetic mutations associated with autism and ECS deficit (Foldy, et al, 2013)
- Alterations of ECS in mice resulted in autistic-type behavioral abnormalities (Kerr, et al, 2013)
- Increased anandamide activity at CB1 receptors improves ASD-related social impairment (Wei, et al, 2016)
Autism Spectrum Disorder

CB2 receptors up-regulated in white blood cells of children with autism
(Siniscalco, et al, 2013)

Plasma anandamide levels decreased in ASD such that anandamide concentrations significantly differentiated ASD cases
(Karhson, et al, 2018)
60 children with ASD -- ages 5-18 -- low functioning -- 83% boys -- severe behaviors

20:1 CBD:THC oil - starting dose CBD 1 mg/kg/day titrated up to max 10 mg/kg/day

• 52% responded
• 48% were given lower CBD:THC ratios (up to 6:1 with max dose of 5 mg/kg/day)
• 22% lower ratio much better, 12% slightly better, 10% no change, 5% worse

• **End of study: 73% still on treatment** (mean duration ~11 months)
• 27% stopped treatment: irritability, difficulty giving the oil, low efficacy +/- side effects

Range of dosing: CBD 0.1 - 6.4 mg/kg/day and THC 0.2 – 0.5 mg/kg/day
Cannabidiol Based Medical Cannabis in Children with Autism
(Aran, et al Neurology 2018)

Behavioral outbreaks: 61% much or very much improved

Improved anxiety: 39%

Improved communication: 47%

Less medication or lower doses: 33%

Stopped other medication: 24%

Added or increased meds: 8%

Fig. 1 Caregivers global impression of change in behavior anxiety and communication following cannabis treatment
Lower circulating endocannabinoid levels in children with autism spectrum disorder

(Aran et al. Molecular Autism 2019)

EC LEVELS SUBSTANCIALLY LOWER IN CHILDREN WITH ASD

Fig. 1 Lower serum endocannabinoid levels in children with ASD. Legend: low endocannabinoid “tone” in serum samples of 93 children with ASD compared with 93 age- and gender-matched controls. Results of anandamide (AEA; panel a), oleoyl ethanolamine (OEA; panel b), and palmitoylethanolamide (PEA; panel c) are presented as mean, standard error, and distribution respectively.
188 patients between 2015 -2017

• Treatment for most was 20:1 ratio CBD:THC oil (whole plant)

• At 6 months: 82.4% (155) still in active treatment

• 30.1% “significant improvement”
• 53.7% “moderate improvement”
• 6.4% “slight improvement”
• 8.6% “no change”

• 23 patients reported side effects – restlessness 6%, sleepiness 3%, intoxication 3%, increased appetite 3%, digestion issues 3%, dry mouth 2%, lack of appetite 2%

• Less than 5% discontinued due to SE

• “Cannabis is safe, effective and well-tolerated for treatment of ASD”
Supplementary figure S1: Distribution of cannabinoids consumptions. Total CBD (in mg) consumed at every intake by 66 patients receiving oil with 30% CBD and 1.5% THC. THC is 1/20 of the amount of CBD.

Most dosed three times a day

Schleider, et al 2019
<table>
<thead>
<tr>
<th>Condition</th>
<th>Intake prevalence Total (188)</th>
<th>Change at six months</th>
<th>Symptom disappeared</th>
<th>Improvement</th>
<th>No change or deterioration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restlessness, No. (%)</td>
<td>170 (90.4)</td>
<td></td>
<td>1 (1.2)</td>
<td>71 (89.8)</td>
<td>7 (8.8)</td>
</tr>
<tr>
<td>Rage attacks, No. (%)</td>
<td>150 (79.8)</td>
<td></td>
<td>1 (1.3)</td>
<td>65 (89.0)</td>
<td>7 (9.5)</td>
</tr>
<tr>
<td>Agitation, No. (%)</td>
<td>148 (78.7)</td>
<td></td>
<td>1 (1.4)</td>
<td>57 (83.8)</td>
<td>10 (14.7)</td>
</tr>
<tr>
<td>Sleep problems, No. (%)</td>
<td>113 (60.1)</td>
<td>9 (19.5)</td>
<td></td>
<td>27 (58.6)</td>
<td>10 (21.7)</td>
</tr>
<tr>
<td>Speech Impairment, No. (%)</td>
<td>113 (60.1)</td>
<td>—</td>
<td></td>
<td>15 (30)</td>
<td>35 (70)</td>
</tr>
<tr>
<td>Cognitive impairment, No. (%)</td>
<td>91 (48.4)</td>
<td>—</td>
<td></td>
<td>15 (27.2)</td>
<td>40 (72.7)</td>
</tr>
<tr>
<td>Anxiety, No. (%)</td>
<td>69 (36.7)</td>
<td>—</td>
<td></td>
<td>24 (88.8)</td>
<td>3 (11.1)</td>
</tr>
<tr>
<td>Incontinence, No. (%)</td>
<td>51 (27.1)</td>
<td>2 (9.0)</td>
<td></td>
<td>7 (31.8)</td>
<td>13 (59.0)</td>
</tr>
<tr>
<td>Seizures, No. (%)</td>
<td>23 (12.2)</td>
<td>2 (15.3)</td>
<td></td>
<td>11 (84.6)</td>
<td>—</td>
</tr>
<tr>
<td>Limited Mobility, No. (%)</td>
<td>17 (9.0)</td>
<td>2 (18.1)</td>
<td>—</td>
<td>—</td>
<td>9 (81.8)</td>
</tr>
<tr>
<td>Constipation, No. (%)</td>
<td>15 (8.0)</td>
<td>1 (12.5)</td>
<td></td>
<td>6 (62.5)</td>
<td>2 (25)</td>
</tr>
<tr>
<td>Tics, No. (%)</td>
<td>15 (8.0)</td>
<td>1 (20.0)</td>
<td></td>
<td>4 (80.0)</td>
<td>—</td>
</tr>
<tr>
<td>Digestion Problems, No. (%)</td>
<td>14 (7.4)</td>
<td>1 (12.5)</td>
<td></td>
<td>5 (62.5)</td>
<td>2 (25.0)</td>
</tr>
<tr>
<td>Increased Appetite, No. (%)</td>
<td>14 (7.4)</td>
<td>1 (33.3)</td>
<td></td>
<td>1 (33.3)</td>
<td>1 (33.3)</td>
</tr>
<tr>
<td>Lack of Appetite, No. (%)</td>
<td>14 (7.4)</td>
<td>2 (40.0)</td>
<td></td>
<td>1 (20.0)</td>
<td>2 (40.0)</td>
</tr>
<tr>
<td>Depression, No. (%)</td>
<td>10 (5.3)</td>
<td>—</td>
<td></td>
<td>5 (100.0)</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 2. Symptom prevalence and change. Symptom prevalence at intake in 188 patients assessed at intake and change at six months in patients responding to the six-month questionnaire.
Cannabinoid Medicines

- THC
- CBD
 - high ratio (27:1, 18:1, 10:1)
 - low ratio (4:1, 2:1, 1:1)
- THCA (THC acid)
- CBDA (CBD acid)
- CBG (cannabigerol)

Tested - Consistent batch to batch - Affordable – Accessible – Concentrated
Autism Case Report

17 year old girl with autism, anxiety, aggression, non-verbal, severe OCD, possible PCOS, no response to multiple medications

Started with **high-ratio CBD** at low doses and high doses (tried 3 products)
→ best dose response at 15 mg of 23:1 ratio once daily

Tried THC → best dose response at 2 mg THC once daily (tried 3 products)

Tried THCA → aggravated symptoms, discontinued use (tried 2 products)

Tried CBG → best dose response at 6 mg once daily (tried 2 products)

Parents report ~ 60% less anxiety, quicker and easier transitions, happier,
>90% reduction of aggression towards others, weaning Prozac