

Background

- Major depressive disorder (MDD) and alcohol use disorder (AUD) are prevalent psychiatric conditions known to occur at different rates and have different treatment outcomes in men and women
- MDD and AUD are associated with glutamatergic dysregulation¹
- an N-methyl d-aspartate glutamate receptor • Ketamine, (NMDAR) antagonist, has shown efficacy in treatment of MDD and AUD^{1,9}
- Numerous studies show differences in glutamate system regulation between men and women, suggesting there may be sex-dependent differences in ketamine treatment response^{1,2}
- Animal studies suggest NMDAR density is regulated by gonadal hormones- increases during follicular phase/reduces during luteal phase³
- The purpose of this review is to summarize the current knowledge of sex-specific outcomes of ketamine treatment for MDD and AUD.

Sex Differences in Glutamate Pathologies: Implications in Ketamine Treatment for Depression and **Alcohol Use Disorder**

Hollis Chillura, Jennifer Jones, M.D. Medical University of South Carolina

Results

Animal	Studies					
Reference	Condition	Animal Model	Hormonal Effects Measured	Primary Outcome	Ketamine Dose	Results
4	Depression	Sprague -Dawley rats	Yes	Forced Swim Test	0, 2.5, 5.0, 10.0 mg/kg	 Females more sensitive to ketamine than males
5	Depression	C57BL/ 6J mice	No	Forced Swim Test	0, 3, 5, 10 mg/kg	 Females responded to all ketamine doses; males responded to highest dose
6	Depression	C57BL/ 6J mice	No	Forced Swim Test	0, 3, 5, 10 mg/kg	 Males: antidepressant effects; females: anxiety/depression-like behaviors
7	Depression	Sprague -Dawley rats	Yes	Forced Swim Test	0, 2.5, 5 mg/kg	 Ketamine reversed depression symptoms in females more than males
8	Depression	Sprague -Dawley rats	Yes	Sucrose Preferenc e Test	0, 2.5 mg/kg	 Females had greater increase in sucrose preference than males Exogenous progesterone increased sensitivity to ketamine
9	Depression	ICR mice	No	Forced Swim Test	0, 5, 10 mg/kg	 No significant differences in behavior between the sexes
10	Depression	Sprague -Dawley rats	No	Forced Swim Test	0, 10 mg/kg	 Stress affected females more than males Females more sensitive to ketamine treatment than males
11	Depression	C57BL6 /J mice	Yes	Forced Swim Test	0, 1.5, 3.0 mg/kg	 No different outcomes between the sexes P4 stage rats had antidepressant response to ketamine at a lower dose than other groups
12	Alcohol Use Disorder	C57BL/ 6J mice	No	Ethanol consumpt ion	0, 3 mg/kg	 Ketamine decreased binge-like ethanol consumption in females, not males
13	Alcohol Use Disorder	Sprague -Dawley rats	No	Alcohol consumpt ion	0, 0.5 mg/kg	Males' alcohol consumption reduced more than females'
14	Alcohol Use Disorder	Alcohol preferrin g rats	No	Alcohol consumpt ion	0, 5 , 7.5 , 10 mg/kg	 Females' alcohol consumption decreased more significantly with ketamine than males'

Human Studies

Reference	Sample size	Condition	Intervention	Main Outcome Measures	Results
15	N=99	Depression	0.1, 0.2, 0.5, 1.0 mg/kg ketamine/ 0.045 mg/kg midazolam	HAM-D6 ^a	 No significant differences between the sexes Ketamine decreased depression symptoms acutely in both sexes
16	N=27	MDD and BD	0.5 mg/kg ketamine	HDRS	 Men more likely to reach 50% better outcomes than women with ketamine
17	N=108	Depression	0.5 mg/kg ketamine	HDRS	 Gender not associated with antidepressant response to ketamine

- potential confounder
- one showed a small sex-based effect
- ketamine treatment outcomes

Scan QR code for references.

Acknowledgements

This work was supported in part by NIH grant R25 DA020537. I would also like to thank my mentor Dr. Jennifer Jones, M.D. and the DART program directors for the opportunity to conduct this research.

Conclusions

Preclinical studies implicate sex as a moderator of treatment outcomes in MDD and AUD animal models

• However, there were few analyses in human trials of this

• Two of the three clinical trials showed null findings, while

• Future studies should continue to evaluate sex-specific differences and the effects of female hormone levels on

Studies should characterize if female participants are on exogenous hormones- and if so, which type

References

