

Default mode network resting-state functional connectivity in individuals with bipolar disorder and co-occurring alcohol dependence: Results from a 2x2 Factorial Design

Jade de Araújo, B.S., William Mellick, PhD, Helena Brenner, B.S., Sara Hix, B.S., and James J. Prisciandaro, PhD Medical University of South Carolina

Background

- Bipolar is the psychiatric disorder most commonly associated with alcohol dependence.
- Abnormal default mode network (DMN) resting-state functional connectivity (rsFC) has been reported in both individuals with bipolar disorder (BD) and individuals with alcohol dependence (AD).
- Aberrant patterns of rsFC in DMN in individuals with AD and other classes of substance use disorders are associated with craving and relapse.
- There was found dysfunction in connectivity within DMN across studies in bipolar disorder (BD) groups when compared to health controls.
- The present study represents the first known investigation of DMN rsFC in individuals with co-occurring BD and AD (BD+AD).

Aims

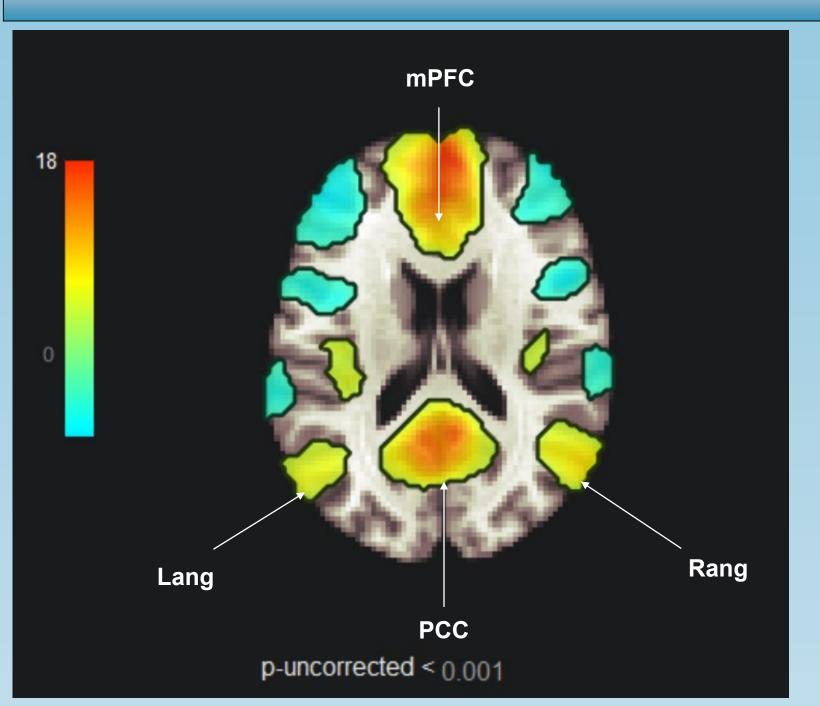
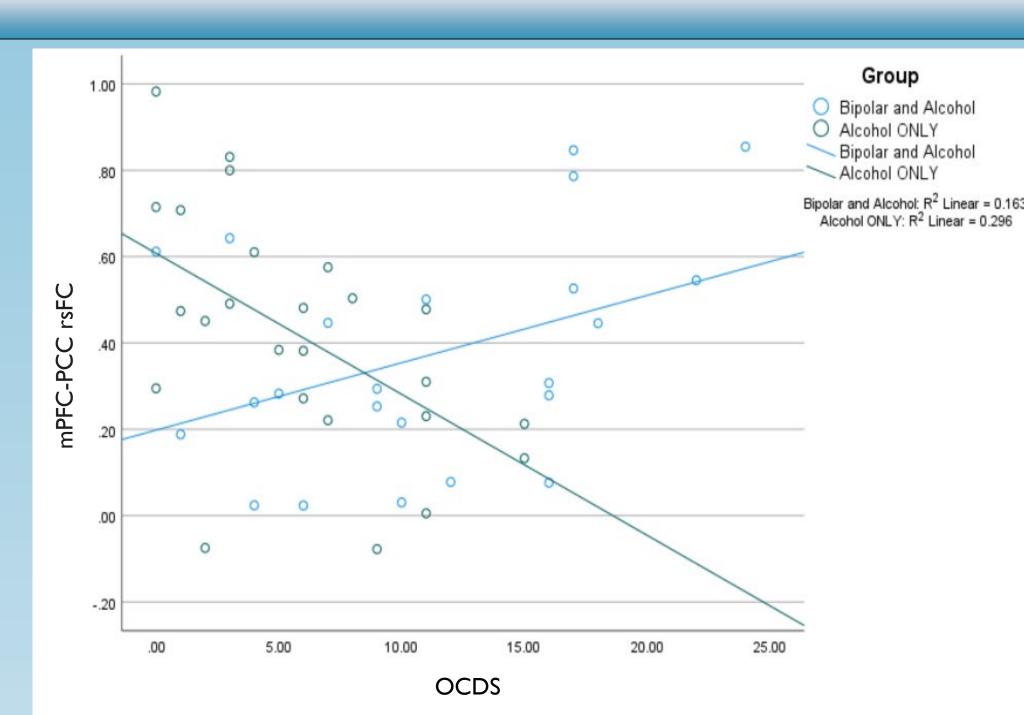
The aim of this study is to investigate the rsFC within DMN using a ROI-to-ROI method in a sample of BD, AD, BD+AD and health control (HC) patients.

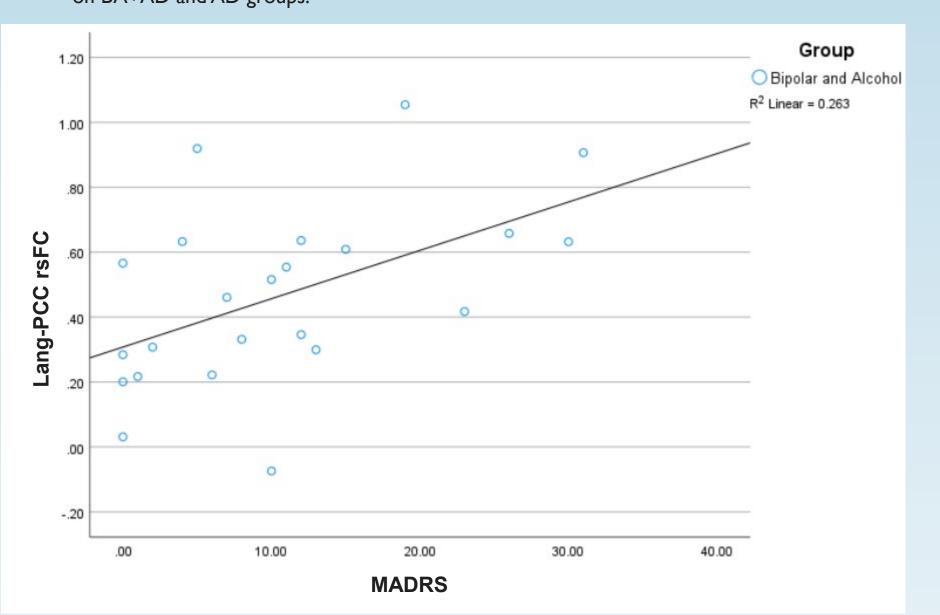
Methods

- Participants (n=104) met DSM-IV-TR diagnostic criteria for BD+AD (n=25), BD alone (n=29), AD alone (n=25), or no diagnosis (n=25).
- Participants completed a baseline assessment and returned for rsfMRI scanning after demonstrating ≥ I week of abstinence from alcohol/drugs via blood serum and urine.
- Images were preprocessed and went through realignment, slice timing correction, normalization, and smoothing with CONN toolbox.
- Seed-based correlation approach between a priori regions of interest (ROIs) was performed.
- 2x2 general linear univariate models of Fisher's z-scores were tested to examine rsFC between-group differences for each pair of DMN regions (mPFC, PCC and bilateral angular gyri).
- Bivariate Pearson correlations between z-scores and symptom measures were explored within groups.

Results

Bipolar and Alcohol


Fig. I DMN regions of interest: mPFC (medial prefrontal cortex), PCC (posterior

cingulate cortex), Lang (left angular gyri) and Rang (Right angular gyri).

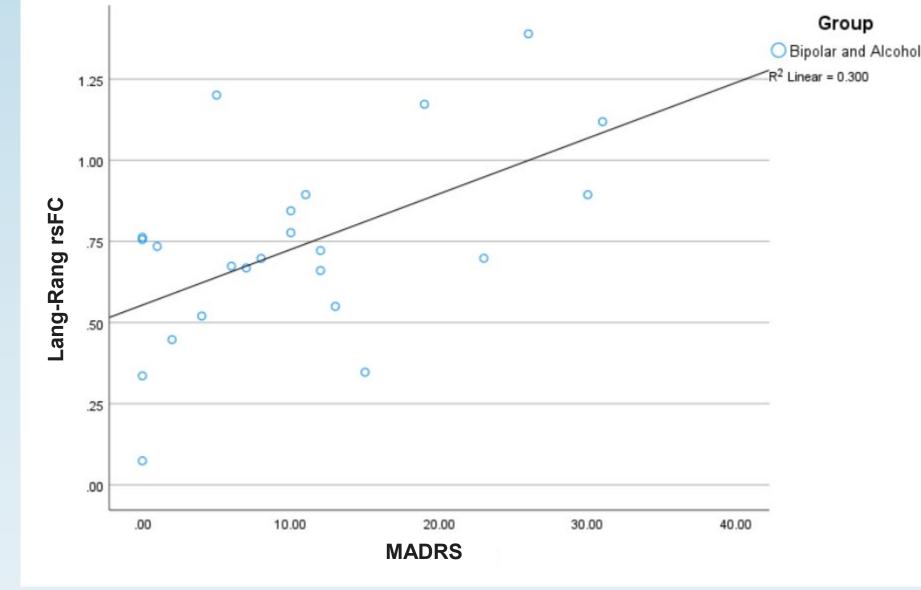

- Main effects of BD and AD and the BD x AD interaction terms were non-significant in two-bytwo models.
- The directionality of PCC-mPFC connectivity and alcohol craving correlations varied between AD (r = -0.54, p = 0.005) and BD+AD groups (r = 0.52, p = 0.011).
- Connectivity across bilateral angular gyri and the PCC positively correlated with depressive symptoms in BD+AD group (r's \geq 0.44, p-values \leq 0.034).

Fig. 2 Scatterplots with regression line fitting illustrating the correlation of mPFC-PCC rsFC with OCDS scores on BA+AD and AD groups.

Fig. 5 Scatterplots with regression line fitting illustrating the correlation of Lang-PCC rsFC with MADRS scores on BA+AD groups.

Fig. 3 Scatterplots with regression line fitting illustrating the correlation of Lang-Rang rsFC with MADRS scores on BA+AD groups.

Fig. 4 Scatterplots with regression line fitting illustrating the correlation of Rang-PCC rsFC with MADRS scores on BA+AD groups.

Table I Participant characteristics and group comparison result

	Farticipant group				P
	BD+AD ¹ (n = 25)	BD alone ² (n = 29)	AD alone ³ (n = 25)	HC⁴ (n = 25)	
Age (in years)	35.83(10.93)	35.59(11.11)	42.12(11.91)	37.48(9.57)	0.126
Sex (% female)	43.5	55.2	32.0	52.0	0.337
Smoking status (%)	43.5	17.2	28.0	32.0	0.225
Drug dependence (%)	30.4 ^{2,4}	0.01,3	32.0 ^{2, 4}	0.01,3	<0.001
Anxiety disorder (%)	69.6 ^{3,4}	65.5 ^{3,4}	28.01,2,4	0.01-3	<0.001
BD subtype (% Type-I)	68.2 ^{3,4}	62.I ^{3,4}	0.01,2	0.01,2	<0.001
YMRS	2.13(2.83) ⁴	1.82(2.72)4	1.44(1.69)	0.32(0.80)1,2	0.025
MADRS	10.65(9.57) ^{3,4}	7.68(6.11) ^{3,4}	3.52(3.99)1,2	0.88(1.90)1,2	<0.001
ADS	18.70(7.40) ^{2,4}	2.07(2.30)1,3	$16.08(8.63)^{2,4}$	$0.72(1.34)^{1,3}$	<0.001
OCDS	I I .04(6.72) ¹⁻⁴	0.86(1.30) 1,2,4	5.88(4.56) ^{1,3}	0.88(0.88) 1,3	<0.001
% Heavy-drinking days (past 90)	35.71(19.29) ^{2,4}	1.25(3.55)1,3	40.38(20.59) ^{2,4}	0.96(1.84)1,3	0.000
% Drank w/in 2wk	57. I	32.1	25.0	36.0	0.142
Medication (%)					
Lithium	I7.4 ^{3,4}	27.6 ^{3,4}	0.01,2	0.01,2	<0.001
Antipsychotic	30.4 ²⁻⁴	58.6 ^{1,3,4}	0.01,2	0.01,2	<0.001
Anticonvulsant	60.9 ^{3,4}	41.4 ^{3,4}	0.01,2	0.01,2	<0.001
Antidepressant	47.8 ^{3,4}	34.5 ^{3,4}	0.01,2	0.01,2	<0.001

Demographics

Participant group

Conclusion

- This study extends previous research on resting-state connectivity within default mode network and contributes to mixed findings for BD and AD populations.
- Reducing angular gyrus functional connectivity may improve depressive symptoms in individuals with BD+AD as it has in prior treatment studies of major depressive disorder.
- Given associations with both depressive symptoms and alcohol craving, PCC functional connectivity may represent a putative treatment target for concurrent symptom reduction in BD+AUD.

Acknowledgements

This work was supported by NIH grant R25 DA020537 and by Dr. Prisciandaro's NIAAA K23 AA020842.