

Adding Dual Energy CT to Routine Emergency Department Workflow: Friend or Foe?

The Dual Energy Duel

Andrew D. Hardie, M.D.

Mark D. Kovacs, M.D.

• Both authors have nothing to disclose

Why bother doing DECT?

- Traditional CT is really just a map of pixel densities
 - Inherent tissue density
 - attenuation of x-ray beam by the tissue
 - Density of iodine
 - administered contrast agents

Traditional CT

- Use of pre and post contrast imaging
 - Contribution of iodine can be better determined
 - Still some limitations but overall useful
 - Still not much information about tissue other than density
 - Things that are the same density cannot be delineated

Problems with traditional CT

- Most CT has transitioned to single phase post-contrast imaging
 - faster, cheaper, less radiation
 - But, Iodine and inherent tissue density cannot be readily differentiated
- Clinicians are used to the powerful capabilities of MRI and other advanced techniques and expect more of CT
 - Improved differentiation can reduce need to order additional studies

How can Dual Energy CT help?

- Different materials may have similar density on traditional CT (at a single energy), but have different density at low and high energy.
- Further, how much a material changes between low and high energy beams is specific to each material.

Assessment of the slope of density change at low (80) and high (140) energy (kV)

How to scan with 2 different energy levels?

- Requires hardware that is part of the CT scanner
 - can't be done on regular CT scanners
- Each manufacturer has different techniques (different scanner designs) to achieve this

Some differences need to be understood

DECT-5 Different Approaches

Siegel MJ et al., JCAT 2017

- Audience?
- Who uses it?
- What are perceived advantages and disadvantages?

FRIEND

- Materials (instead of density) can be ascertained
 Iodine (contrast) vs. blood
- Attain Virtual Non-contrast data
 - Rarely scan w/ and w/o in ED (time and radiation)
- Improve visualization thru post-processing
 - "Rescue" a poor IV contrast bolus
 - Metal artifact reduction

Dual Source DECT – Post Processing

FOE

- Increased quantity of information
 - Easy to be overwhelmed (initially)
 - Can take more time (initially)
- Increased expertise in interpreting
 - Could lead to mistakes
- More difficult to acquire
 - Depends on the system used

- 62 year old Female
- Low H/H, r/o bleed

See it doesn't contain IODINE!

- Virtual Noncontrast (VNC)
 - Intrinsically dense
 - Suggests not contrast/ active bleeding

Virtual noncontrast (VNC)

[1] CT App: VNC/ CM/ Mixed 0.7 Mean: 96.3/ -0.2/ 94.5 HU Stddev: 17.7/ 3.4/ 15.0 HU Area: 7.1 mm2 Iodine Density: 0.2 mg/ml / 3.5 %

Iodine Density = 0.2 mg/mL

lodine Density

- < 0.3 mg/mL → very unlikely to contain iodine
- > 1.0 mg/mL → likely contains iodine
- Diagnosis:
 - Ingested material
- Followup
 - No evidence of bowel bleeding
 - No BRBPR
 - No Melena
 - H/H low but stable

- 66 yo M
- 3 days BRBPR
- OSH EGD negative
- Transferred to MUSC

- Assume no oral contrast given
- Looks like active bleed, right?
- How can DECT help?
- Number of ways

• At MUSC

- Can view low and high energy images
- Separately

Original (0.7 blended)

Original (0.7 blended)

Assuming this is active bleed, which energy SHOULD attenuate more?

Original (0.7 blended)

Assuming this is active bleed, which energy SHOULD attenuate more?

ANSWER: 100 kV attenuates more = appears brighter B/C closer to K edge of IODINE

Iodine Map

VNC

Iodine density = 12.5 mg/mL

Conventional angiogram performed

(Filt. 3)

- 66 yo F
- Scan done for abdominal pain
- Incidental adrenal nodule

- Single phase scan
- HU > 10 on PV
- Can DECT help?

[1] CT App: VNC/ CM/ Mixed 0.7 Mean: 6.6/ 42.0/ 48.8 HU Stddev: 4.1/ 7.0/ 8.0 HU Area: 0.2 cm2 Iodine Density: 1.4 mg/ml / 23.1 %

- Single phase scan
- HU > 10 on PV
- Can DECT help?
 VNC
 HU = 7
- Diagnosis: Adenoma

Case # 4

- 28 yo M -- ATV Trauma
- Ran into chain along midabdomen
- Initial CT showed mesenteric injury
- 52 cm small bowel resected
- Post-surg, progressive severe pain over days

1 week post-surgery

1 week + 4 days

- Decreased iodine uptake
- In distal ileum
- Diagnosis: Bowel Ischemia

• 72 yo M – MVC Trauma

- Fat stranding anterior abdomen
- Linear high density (arrow)
- Is this active bleeding?

- Fat stranding anterior abdomen
- Linear high density (arrow)
- Is this active bleeding?YES!

[2] CT App: VNC/ CM/ Mixed 0.7 Mean: 45.0/ 69.5/ 113.2 HU Stddev: 8.7/ 23.5/ 29.1 HU Area: 0.1 cm2 Iodine Density: 4.1 mg/ml / 72.9 %

lodine density = 4.1 mg/mL

VNC

• Diagnosis:

200 [HU]

- Falciform Ligament Avulsion
- With Active Bleeding

• 66 yo F, "fell", trauma CT

- Incidental renal lesion
- Prelim resident impression:
 - "solid renal mass"

Original (0.7 blended)

lodine map

VNC

Diagnosis: Hemorrhagic cyst

Original (0.7 blended)

Iodine map

VNC

Corollary (Case #7)

• 68 yo F, abdominal pain, suspected SBO

SBO presentBut also...

Diagnosis: bilateral renal neoplasms

DECT for Pulmonary Emboli

- PE in Abdomen CT Lung Bases?
- Can DECT help?

Normal DECT Lung Perfusion

Case #9 (Subtler)

- 80 yo F, Hx bladder cancer
- Presents acutely with shortness of breath

See how perfusion helps

See how perfusion helps

- 51 yo M
- Stabbed in the back

Is this active hemorrhage?

Iodine density = 3.4 mg/mL Diagnosis = Active hemorrhage!

- 73 yo F
- Restrained driver in high-speed rollover MVC

Iodine Density > 15 mg/mL Diagnosis = AML with active bleeding

- 82 yo M
- Abdominal pain

-CBD dilated
-Hyperdensity in distal duct / ampulla (arrow)
-Mass? Stone?
-Can DECT help?

-CBD dilated
-Hyperdensity in distal duct / ampulla (arrow)
-Mass? Stone?
-Can DECT help?

Diagnosis: CBD stone (removed via ERCP)

- 60 yo M Hx HCC s/p transplant
- p/w Abdominal Pain
- CT performed (1st scan post transplant)

No lodine present on lodine Map Diagnosis = Adrenal hematoma

Thanks for your attention!

Andrew D. Hardie, M.D.

Mark D. Kovacs, M.D. kovacsm@musc.edu