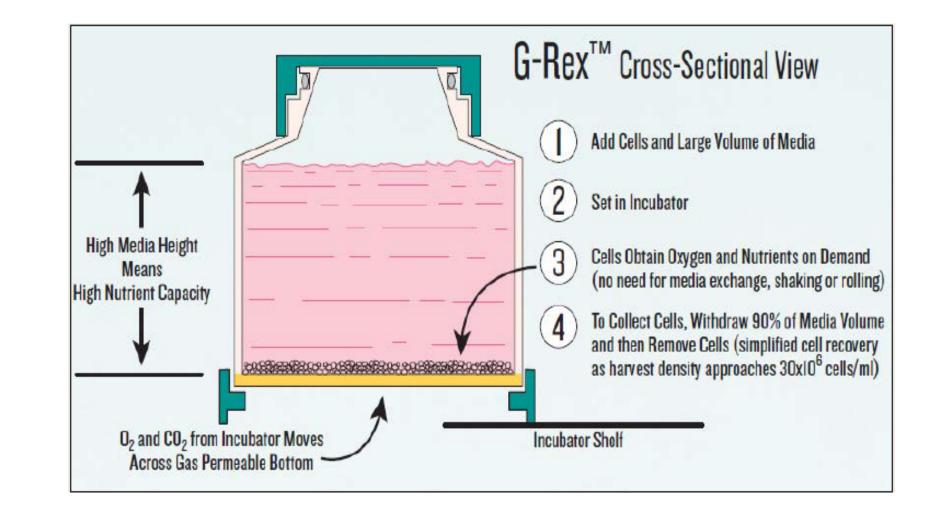
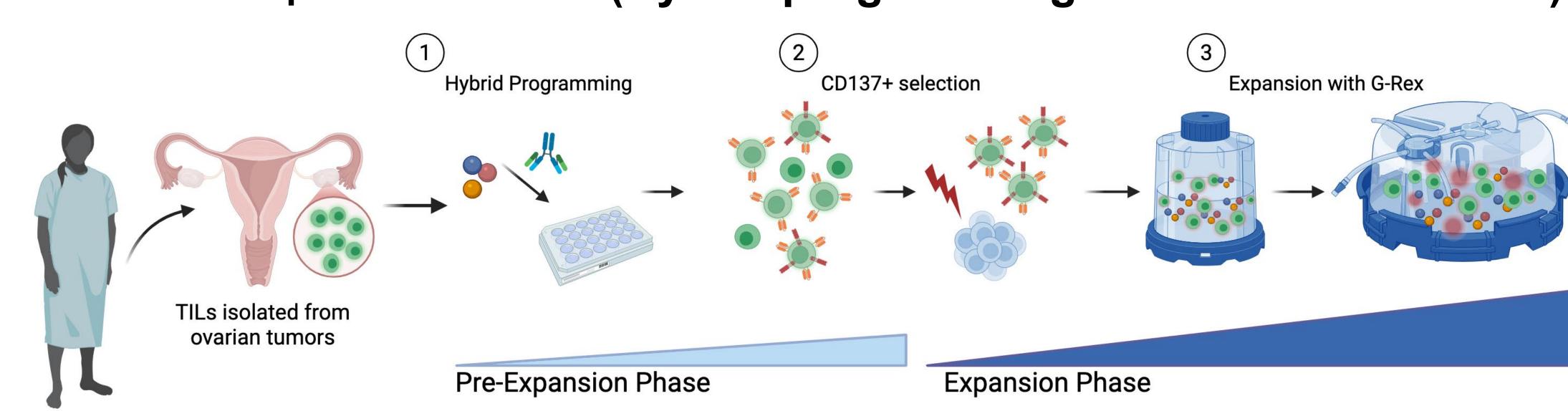

CD137 Enrichment and Cytokine Programming Improve Ovarian TIL **Expansion and Anti-Tumor Function**


Paramita Chakraborty¹, Stephanie Mills¹, Jadan Zavestoski¹, Satyajit Das¹, Suganya Subramanian², Tracy Aggrey-Ansong¹, Nicolina Mascia³, Jian Liu¹, Stefano Berto², Brian Orr³, Shikhar Mehrotra¹

Departments of Surgery¹, Neuroscience², Obstetrics and Gynecology³, Hollings Cancer Center, Medical University of South Carolina

BACKGROUND

- the deadliest remains gynecologic malignancy.
- immunotherapies, adoptive cell (ACT) using tumor-infiltrating lymphocytes (TILs) has shown success in melanoma.
- Presence of CD137+ cells have been correlated with improved survival in ovarian cancer patients.1
- developed a new ex vivo expansion platform optimized for ovarian TILs.



The G-Rex platform enhances T-cell expansion by using a gas-permeable membrane for:

- Increased oxygen delivery,
- Enables large-scale, high-density cell growth
- Maintains high viability and functionality

METHOD

Two-Phase Expansion Protocol (Hybrid programming with CD137 selection)

Method: Ovarian tissue was obtained from eight patients with stage III high-grade epithelial ovarian carcinoma for pathology, next-generation sequencing (NGS), and TIL expansion. The initial priming employed our published hybrid cytokine cocktail, designed to promote effector differentiation while preserving stemness. Following priming, CD137⁺ (4-1BB⁺) T cells were isolated based on activation-induced co-stimulatory expression and subjected to rapid expansion with a G-Rex bioreactor system.

RESULTS

Table 1. Patient Clinical Characteristics

	Histology	Stage at Diagnosis	Initial TIL Sample	Matched TIL Sample
OVA 1	high grade serous carcinoma	3b	Pre-chemo	Post-adjuvant 4C carbo/taxol
OVA 2	high grade serous carcinoma*	3C	Pre-chemo	Post Adjuvant 3C carbo/taxol + Recurrance 4C Mirv/Bev
OVA 3	high grade serous carcinoma	3C	Primary Post 3C carbo/taxol	
OVA 4	high grade serous carcinoma	3C	Primary Post 3C carbo/taxol	
OVA 5	endometrioid adenocarcinoma	3C	Pre-chemo	Post-adjuvant 3C carbo/taxol
OVA 6	high grade serous carcinoma	4b	Pre-chemo	Post-adjuvant 4C carbo/taxol
OVA 7	high grade carcinoma*	3C	Pre-chemo	Post-adjuvant 4C carbo/taxol
OVA 8	endometrioid adenocarcinoma	3A	Pre-chemo	
OVA 10	high grade serous carcinoma	3C	Pre-chemo	
OVA 11	high grade serous carcinoma	3C	Pre-chemo	
	*platinum refractory			

Table 1. Clinical characteristics from ovarian patients used to develop TILs including if TILs expanded after therapy and what therapy was received.

Table 2. Optimization of GREX Expansion Phase

Гumor	Programming Condition	Number of Cells Activated (x10^6)	Total Days of Procedure	Number of Cells After Expansion (x10^9)
Ovarian-5 Post	Conventional	N/A	25	2.5
	Hybrid CD137 Sorted	5.0	33	16.1
Ovarian-6	IL2 Low	2.2	34	18.5
	Hybrid	2.2	34	16.8
Ovarian-6 Post	NCIIL2 ^{hi}	N/A	24	2.1
	Hybrid CD137 Sorted	8.0	31	15.4
Ovarian-7	NCIIL2 ^{hi}	N/A	24	2.1
	Hybrid CD137 Sorted	4.0	22	2.4
Ovarian-7 Post	NCI IL2 ⁿⁱ	N/A	24	2.1
	Hybrid CD137 Sorted	6.0	22	3.2

Table 2. TILs were expanded using the method above which consistently produced 15-20 billions of viable TILs with >90% viability and approximately 2500-fold expansion.

Figure 1: Two-phase expansion enriches memory-like, less

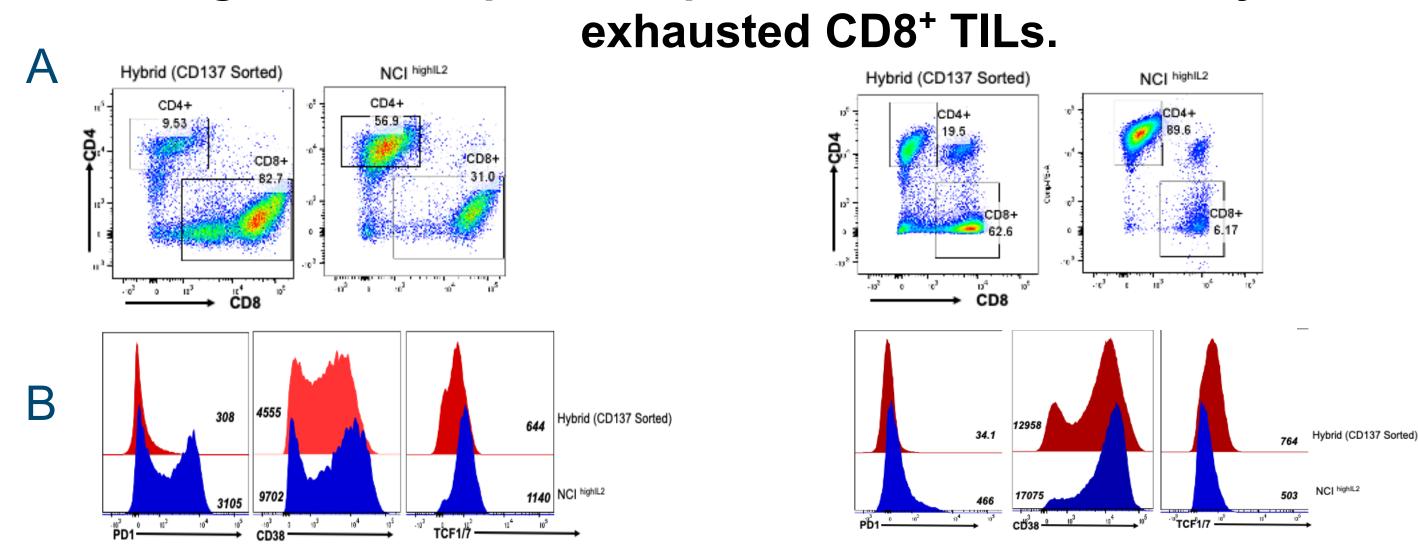
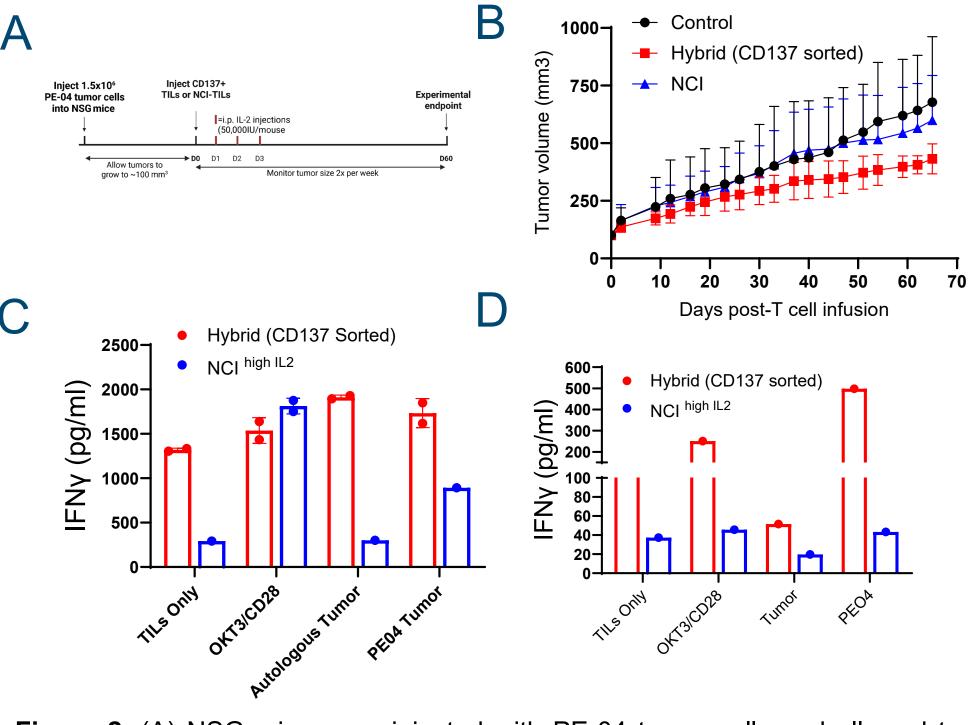
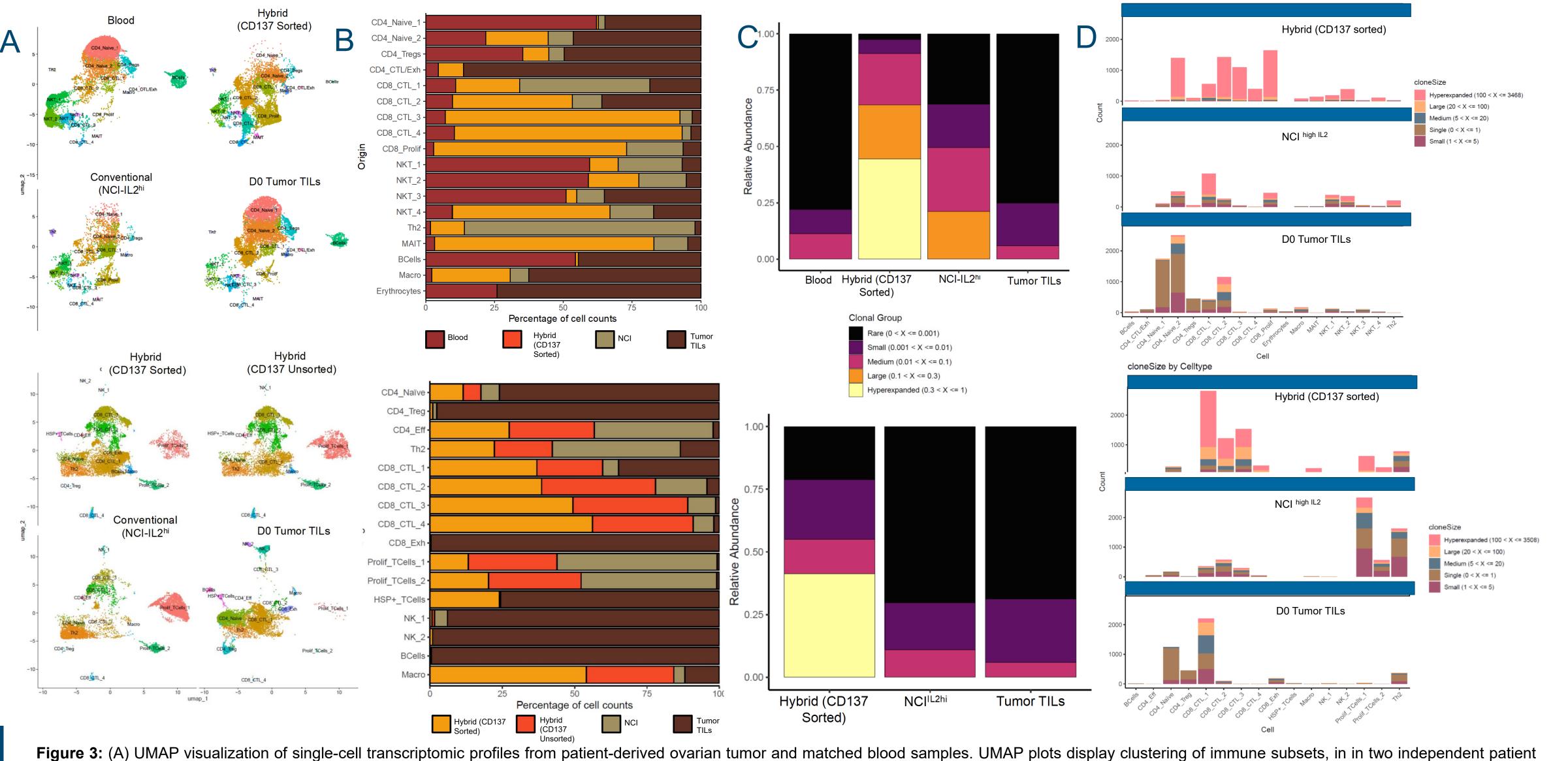


Figure 1: Flow cytometry was performed on matched samples from ovarian tumor tissue, peripheral blood, and two ex vivo expanded TIL populations derived from the same patient (D0 tumor TILs). Expanded TIL groups included: (1) NCI IL2 high TILs, generated using the traditional NCI high-dose IL-2 protocol (6000 U/ml), and (2) Hybrid (CD137-sorted) TILs, enriched for CD137⁺ tumor-reactive cells and subsequently expanded in GREX flasks. (A) Representative plots show the distribution of CD4⁺ and CD8⁺ T cells following Hybrid versus NCI expansion for two patients. Hybrid expansion yielded a higher proportion of CD8⁺ T cells (62.6%) compared to Conventional NCI IL-2 expansion (6.2%), exhibited reduced PD-1 expression but increased CD38 and TCF1/7 compared to Conventional NCI IL2 high TILs suggestive of preserved stem-like and memory potential

Figure 2: CD137⁺-selected TILs exhibit enhanced tumor control in the platinumresistant PE-04 ovarian cancer cell line.




Figure 2: (A) NSG mice were injected with PE-04 tumor cells and allowed to grow until tumors reached a volume of ~100 mm³. Mice were then received either CD137-selected TILs or conventional NCI-expanded TILs, along with IL-2 (50,000 U/mouse for three consecutive days). Tumor growth was monitored following infusion, and cumulative tumor growth curves are shown. (C, D) IFN-γ release was measured in two independent patient samples following co-culture of expanded TILs with autologous tumor targets and ovarian tumor cell lines. Hybrid CD137-sorted TILs produced stronger IFN-γ responses than conventional NCI IL-2-expanded TILs, indicating a higher frequency of tumorreactive clonotypes within the Hybrid population.

ACKNOWLEDGEMENTS

HCC Resources Flow Cytometry/Cell Sorting, Dept. of Surgery, NIH-HL-007260R01 CA250458, R01 CA236379, GREX Grant Program Thank you to all the Hollings Cancer Center patients who have donated their tumor

tissue for this study. Hollings Cancer Center Translational Science Laboratory, Flow Cytometry Core

Figure 3: Metabolic programming and CD137⁺ selection preferentially which was predominantly CD4⁺. (B) Histograms of PD-1, CD38, and TCF1/7 demonstrate that Hybrid-expanded TILs expand CD8⁺ TILs and hyper-expand defined TCR clonotypes.

samples. (B) The accompanying bar plot quantifies cell-type composition, showing Hybrid TILs enriched for CD8 CTLs and proliferative subsets, while Conventional NCI-IL2hi expansion favored CD4 naïve and Treg populations. (C) Clonal homeostasis analysis showing the relative abundance of TCR clonotypes stratified into rare $(0 < X \le 1 \times 10^{-4})$, small $(1 \times 10^{-4} < X \le 1 \times 10^{-3})$, medium $(1 \times 10^{-3} < X \le 1 \times 10^{-2})$, large $(1 \times 10^{-2} < X \le 1 \times 10^{-2})$ ≤ 0.1), and hyperexpanded (0.1 < X ≤ 1) groups. Conventional NCI-expanded TILs retained a substantial pool of rare and small clones, while Hybrid-expanded TILs were relatively enriched in large and hyperexpanded clonotypes. (D) Bar plots show TCR clone size distribution stratified by cell type for CD137-sorted hybrid expansion, high IL-2 NCI protocol expansion, and baseline tumor-derived T cells. Clone sizes were defined as: hyperexpanded ($100 < X \le 3468$), large ($20 < X \le 100$), medium ($5 < X \le 20$), small ($1 < X \le 5$), and singletons ($0 < X \le 1$). Tumor samples contained predominantly small and singleton clones across multiple subsets, particularly CD4⁺ T cells and Tregs. CD137-sorted expansion led to marked enrichment of hyperexpanded clonotypes within CD8⁺ effector subsets, highlighting the selective outgrowth of dominant clones. NCI high IL-2 expansion yielded a broader distribution with small-to-medium clonotypes alongside expanded effector CD8⁺ T cells.

CONCLUSIONS

- TIL Expansion Protocol allows for over 2500-fold, rapid expansion of TILs from ovarian patient tumor samples, before and after exposure to chemotherapy.
- Hybrid cytokine programming CD137+ sorting combined improves CD8+ cell expansion reduces exhaustion markers CD38, PD-1.
- CD137+ sorting allows for hyperexpansion of select clones, which improves tumor control.
- Expanded TILs are over 95% viable and metabolically active upon restimulation.
- This approach holds significant promise for enhancing the efficacy of TIL-based ACT for ovarian cancer.