

Contemporary Evaluation of Hospital Readmissions Following Durable Left Ventricular Assist Device Implant

Zachary W. Sollie MD, Corey Mealer BS, Connor McPherson BS, Jingwen Zhang MS, Brett A. Welch MBA MHA, Chakradhari Inampudi MD, Arman Kilic MD.

Medical University of South Carolina, Charleston, SC

INTRODUCTION

- Hospital readmission following durable left ventricular assist device (LVAD) placement has significant impact on patient quality of life
- Characterization of hospital readmission in this population is not completely understood
- This analysis seeks to quantify the days outside of hospital and analyze readmission trends within 1 year of discharge from index hospitalization

METHODS

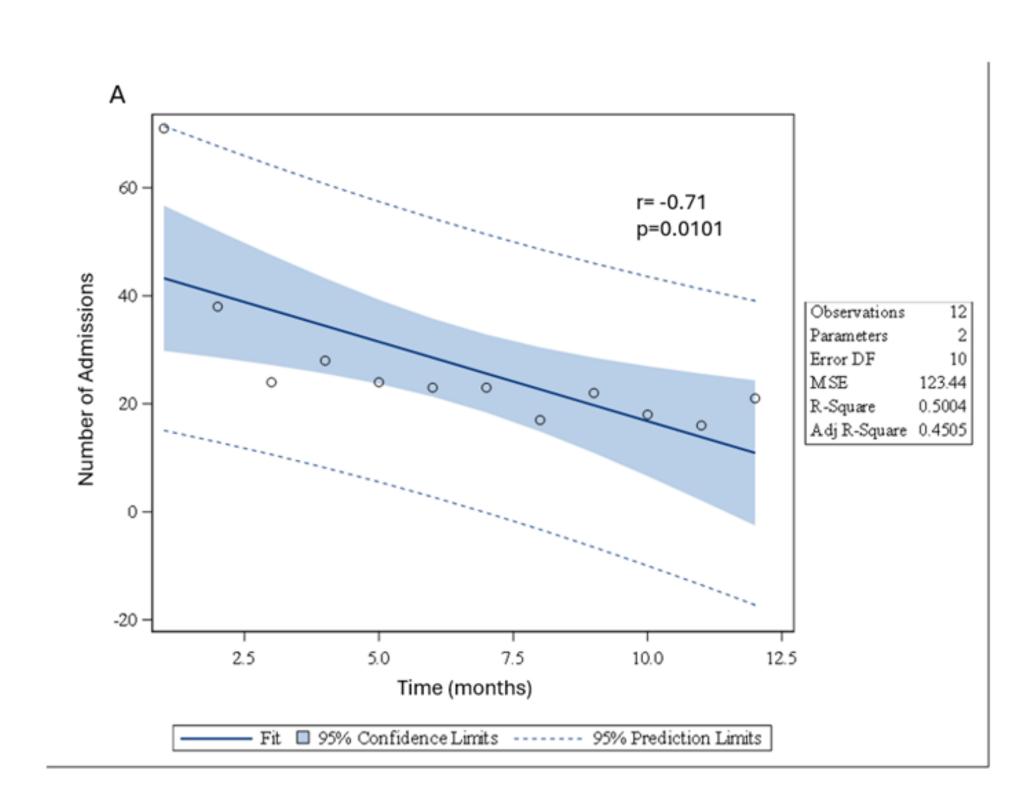
- Durable LVAD recipients between November 2016 and December 2024 from a single institution were retrospectively reviewed
- Inclusion criteria: HeartMate 3 device
- Exclusion criteria: Death, transplant, or pump exchange within 1 year of discharge from index hospitalization,
- Primary outcome: quantification of the number of days spent outside of the hospital within 1 year of discharge
- Secondary outcome: Hospital readmission trend over time
- Univariable and multivariable riskadjustment performed to identify risk factors for readmission
- Linear regression analysis performed to evaluate trends

DISCLOSURES

Arman Kilic is a speaker and consultant for Abiomed, Abbott, 3ive, and LivaNova. Additionally, A.K. is the founder and owner of Qlmetrix. All additional authors have no financial relationships to disclose.

Baseline characteristics for

RESULTS


Table 1	I. Baselin	e charac	terist	ics for
readmi	tted vs no	n-readm	itted	patients

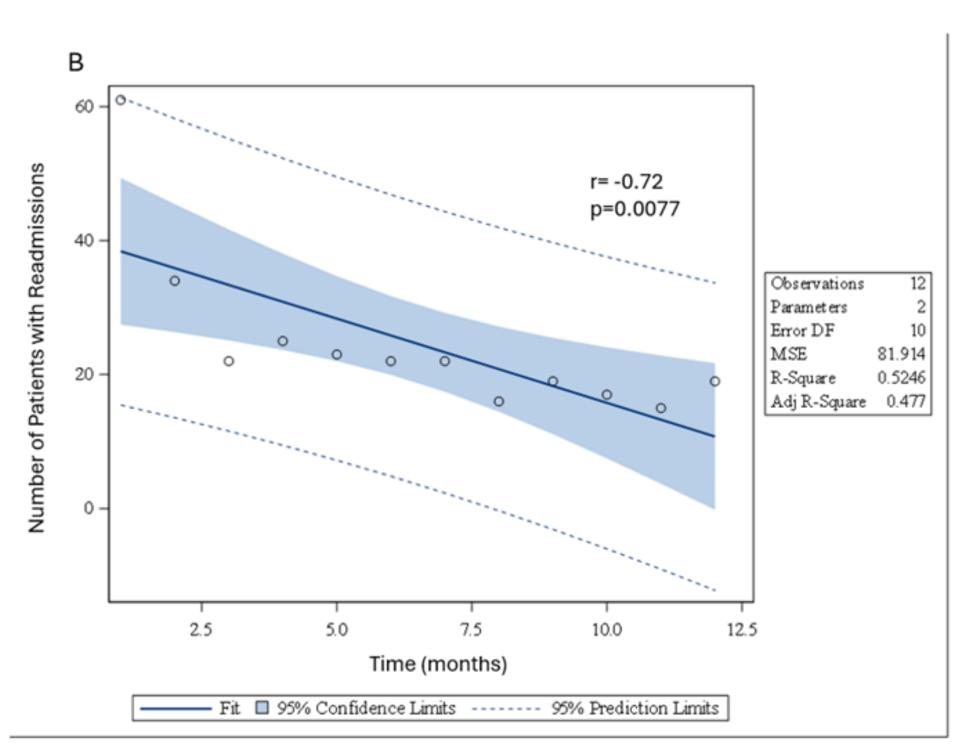

Variable	Patients with	No	P value
N I	readmissions	readmissions	
N	137	69	0.0000
Age	52.3 (14.5)	51.2 (14)	0.6099
Male	89 (65%)	53 (76.8%)	0.0829
Race	40 (00 00()	00 (400()	0.2236
White	40 (29.2%)	29 (42%)	
Black	92 (67.2%)	37 (53.6%)	
Hispanic	4 (2.9%)	3 (4.3%)	
Asian	1 (0.7%)	0 (0%)	
BMI	30 (8.2)	31.1 (8.2)	0.3619
Diabetes	54 (40.3%)	23 (33.8%)	0.3706
HF Etiology			0.5696
NICM	43 (31.4%)	19 (27.5%)	
ICM	94 (68.6%)	50 (72.5%)	
NYHA Class			0.0520
Class 3	26 (19.1%)	6 (8.7%)	
Class 4	110 (80.9%)	63 (91.3%)	
INTERMACS			0.0739
Profile 1	34 (25%)	28 (40.6%)	1
Profile 2	22 (16.2%)	15 (21.7%)	
Profile 3	49 (36%)	16 (23.2%)	
Profile 4	29 (21.3%)	9 (13%)	+
Profile 5	2 (1.5%)	1 (1.4%)	
ICD	96 (72.2%)	48 (70.6%)	0.8127
	110 (80.3%)		0.6887
Preoperative MCS	110 (80.3%)	57 (82.6%)	
Preoperative MCS	00 (72 00/)	40 (70 00()	0.9074
None	99 (73.9%)	48 (70.6%)	
IABP	10 (7.5%)	5 (7.4%)	
Impella	18 (13.4%)	9 (13.2%)	
ECMO	5 (3.7%)	4 (5.9%)	
Preoperative ECHO			
RV Systolic Dysfunction			0.3529
None	40 (29.2%)	17 (24.6%)	
Mild	42 (30.7%)	16 (23.2%)	
Moderate	36 (26.3%)	21 (30.4%)	
Severe	19 (13.9%)	15 (21.7%)	
EF	18.9 (6.1)	19.8 (6)	0.2738
LVEDD	68.2 (10.3)	68.1 (11.9)	0.9421
Preoperative RHC			
RA pressure	11 (6.4)	10.8 (6.9)	0.8383
PVR	4 (2)	3.7 (2.4)	0.3530
Mean PAP	35.8 (10.7)	36 (11.6)	0.9218
PCWP	23.5 (9)	23.9 (9.5)	0.7879
Baseline Cr	1.3 (0.5)	1.4 (0.4)	0.5050
Baseline Tbili	1.3 (0.5)	1.5 (1.2)	0.3640
Pre op Dialysis	5 (3.6%)	5 (7.2%)	0.3540
PFTs	0.070)	J (1.2/0)	0.200
FEV1	65.9 (16.2)	61 1 (15 1)	0.5626
	65.8 (16.2)	64.4 (15.1)	0.5636
FVC FEV/1/EV/C	70.1 (16.9)	68.2 (14.9)	0.4595
FEV1/FVC	74.1 (10.4)	75.1 (7.6)	0.4415
DLCO	64 (15.7)	67.2 (18.3)	0.2565
Mechanical Ventilation	1 (0.7%)	2 (2.9%)	0.2201
History of Stroke	17 (12.7%)	4 (5.9%)	0.1343
History of Cancer	10 (7.5%)	0 (0%)	0.0204
History of Smoking	83 (61.9%)	43 (63.2%)	0.8575
History Illicit Substance Use	27 (20.3%)	10 (14.7%)	0.3329
Surgical Approach			0.3422
Sternotomy	112 (81.8%)	60 (87%)	
Upper hemi-sternotomy +	25 (18.2%)	9 (13%)	
thoracotomy			
CPB Time	116.8 (70.6)	108 (57.8)	0.3731
		7 (10.1%)	0.0126
RVAD Placement	3 (2.2%)	/ (U . / 0	10.0120

Table 2. Primary Outcomes

Primary Outcomes	
Number of patients admitted w/in 90 days	90
Admissions per patient at 90 days	0.6 (0.9)
Number of patients admitted w/in 1 year	137
Admissions per patient at 1 year	1.6 (1.8)
Days alive outside of the hospital within 1	356.1 (14.5)
year of discharge – mean (SD)	

Figure 1. Linear regression for (A) number of hospital readmissions and (B) number of unique patients with readmission over the course of 1 year of discharge from index hospitalization

RESULTS

Table 3: Multivariable analysis for risk of readmissions within 1 year following discharge

Variable	Multivariate Analysis HR
	(95% CI; p value)
Blood Type	
A	0.59 (0.37-0.95; 0.03)
В	1.49 (0.83-2.68; 0.181)
AB	1.37 (0.72-2.61; 0.335)
O	Reference
NYHA Class	
Class 3	Reference
Class 4	0.61 (0.39-0.95; 0.03)
INTERMACS	
Profile 1	Reference
Profile 2	0.92 (0.5-1.7; 0.786)
Profile 3	1.54 (0.96-2.47; 0.074)
Profile 4	1.39 (0.81-2.4; 0.237)
Profile 5	0.56 (0.12-2.51; 0.449)
History of Stroke	1.41 (0.82-2.45; 0.218)
History of Cancer	2.13 (1.08-4.24; 0.03)
RVAD Placement	0.47 (0.14-1.51; 0.204)
*All variables from Table 1 we	re included in univariable
analysis. Variables with p valu	e <0.2 from univariable analysis
were included in multivariable	analysis

CONCLUSIONS

- Despite most LVAD patients
 experiencing at least 1 hospitalization
 within the first year of discharge,
 readmission rates improve over the
 course of the first year
- This group of patients is still able to achieve a high average number of days outside of the hospital which is an important consideration for impact on quality of life

REFERENCES

Eisenga JB, McCullough KA, Afzal A, DiMaio JM, Moubarak G, Milligan G, Kabra N, Rusia A, Rawitscher DA, George TJ. Factors Associated With Readmissions Following Left Ventricular Assist Device Implantation. J Surg Res. 2025 Apr;308:202-208. doi: 10.1016/j.jss.2025.02.009. Epub 2025 Mar 21. PMID: 40120524.

Eltawansy S, Ahmed F, Sharma G, Masood AZ, Chandrani N, Hossein M, Patel S, Khunkhun R, Jain H, Ahmed M, Ahmed R, Bhat A, Asmi N, Aman K, Heaton J, Almendral J. Readmission and Temporal Trends of Post-LVAD Placement Complications in Patients With End-Stage Heart Failure. Artif Organs. 2025 Jul;49(7):1197-1206. doi: 10.1111/aor.14989. Epub 2025 Mar 19. PMID: 40105024.

Alexis JD, Wood K, Gosev I, Jawaid A, Chen L, Godishala A, Tallman M, Thomas S, Martens J, Polonsky B, Chen AY, McNitt S, Sherazi S, Goldenberg I. Survival and Readmission Burden in Advanced Heart Failure Patients Managed With Ventricular Assist Device Versus Continued Medical Therapy. ASAIO J. 2025 Mar 3. doi: 10.1097/MAT.0000000000002382. Epub ahead of print. PMID: 40028781.