

Functional Outcomes After Robotic Assisted Salvage Surgery for Oropharyngeal Cancer

Michael Bobian, MD

Department of Otolaryngology - Head and Neck Surgery

Medical University of South Carolina

39th Annual F. Johnson Putney Lectureship in Head and Neck Cancer

October 24, 2025

Disclosures

No financial disclosures or conflicts of interest

Nonfinancial: No relevant nonfinancial relationship to disclose

Oropharyngeal squamous cell carcinoma is common

Hollings Cancer Center

Oropharyngeal squamous cell carcinoma is common

OPC is the most common mucosal malignancy of the head and neck

>70% of new cases are HPV associated, afflicting young, healthy, non-smokers

Rates continue to rise amid the HPV epidemic

Hollings Cancer Center

Prognosis and functional outcomes after treatment of primary OPC are favorable

Research

JAMA Otolaryngology-Head & Neck Surgery | Original Investigation

Dysphagia After Primary Transoral Robotic Surgery With Neck Dissection vs Nonsurgical Therapy in Patients With Low- to Intermediate-Risk Oropharyngeal Cancer

Katherine A. Hutcheson, PhD; Carla L. Warneke, MS; Christopher M. K. L. Yao, MD; Jhankruti Zaveri, MPH; Baher E. Elgohari, MD; Ryan Goepfert, MD; Amy C. Hessel, MD; Michael E. Kupferman, MD; Stephen Y. Lai, MD, PhD; C. David Fuller, MD, PhD; G. Brandon Gunn, MD; Adam S. Garden, MD; Faye Johnson, MD, PhD; Renata Ferrarotto, MD; Jan S. Lewin, PhD; Neil D. Gross, MD; for the MD Anderson Head and Neck Cancer Symptom Working Group

Prognosis and functional outcomes after treatment of primary OPC are favorable

Research

JAMA Otolaryngology-Head & Neck Surgery | Original Investigation

Dysphagia After Primary Transoral Robotic Surgery With Neck Dissection vs Nonsurgical Therapy in Patients With Low- to Intermediate-Risk Oropharyngeal Cancer

Katherine A. Hutcheson, PhD; Carla L. Warneke, MS; Christopher M. K. L. Yao, MD; Jhankruti Zaveri, MPH; Baher E. Elgohari, MD; Ryan Goepfert, MD; Amy C. Hessel, MD; Michael E. Kupferman, MD; Stephen Y. Lai, MD, PhD; C. David Fuller, MD, PhD; G. Brandon Gunn, MD; Adam S. Garden, MD; Faye Johnson, MD, PhD; Renata Ferrarotto, MD; Jan S. Lewin, PhD; Neil D. Gross, MD; for the MD Anderson Head and Neck Cancer Symptom Working Group

Table 2. Longitudinal MBS Dysphagia Grade (per DIGEST) by Primary Treatment Group

	No. (%) of Patients (95% C	No. (%) of Patients (95% CI)					
DIGEST Score	Primary TORS Group (n = 75)	Primary Radiotherapy Group (n = 182)	Cramer V (95% CI) ^a				
At 3-6 mo							
Grade 0	25 (33.3) [22.9 to 45.2]	72 (39.6) [32.4 to 47.1]					
Grade 1 (mild)	29 (38.7) [27.6 to 50.6]	47 (25.8) [19.6 to 32.8]	_				
Grade 2 (moderate)	4 (5.3) [1.5 to 13.1]	23 (12.6) [8.2 to 18.4]	0.18 (0.06 to 0.28)				
Grade 3 (severe)	1 (1.3) [0.0 to 7.2]	6 (3.3) [1.2 to 7.0]	_				
Missing	16 (21.3) [12.7 to 32.3]	34 (18.7) [13.3 to 25.1]	_				
Prevalence DIGEST grade ≥2	5 (6.7) [2.2 to 14.9]	29 (15.9) [10.9 to 22.1]	-0.14 (-0.23 to -0.01				

Prognosis and functional outcomes after treatment of primary OPC are favorable

Research

JAMA Otolaryngology-Head & Neck Surgery | Original Investigation

Dysphagia After Primary Transoral Robotic Surgery With Neck Dissection vs Nonsurgical Therapy in Patients With Low- to Intermediate-Risk Oropharyngeal Cancer

Katherine A. Hutcheson, PhD; Carla L. Warneke, MS; Christopher M. K. L. Yao, MD; Jhankruti Zaveri, MPH; Baher E. Elgohari, MD; Ryan Goepfert, MD; Amy C. Hessel, MD; Michael E. Kupferman, MD;

Table 2 Longitudinal MBS Dysphagia Grade (per DIGEST) by Primary Treatment Group

Faye .

Unfortunately, at least 17% patients have local or regional recurrence

Grade 0	25 (33.3) [22.9 to 45.2]	72 (39.6) [32.4 to 47.1]	
Grade 1 (mild)	29 (38.7) [27.6 to 50.6]	47 (25.8) [19.6 to 32.8]	_
Grade 2 (moderate)	4 (5.3) [1.5 to 13.1]	23 (12.6) [8.2 to 18.4]	0.18 (0.06 to 0.28)
Grade 3 (severe)	1 (1.3) [0.0 to 7.2]	6 (3.3) [1.2 to 7.0]	_
Missing	16 (21.3) [12.7 to 32.3]	34 (18.7) [13.3 to 25.1]	
revalence DIGEST grade ≥2	5 (6.7) [2.2 to 14.9]	29 (15.9) [10.9 to 22.1]	-0.14 (-0.23 to -0.01)

What are we doing to mitigate adverse outcomes for recurrent oropharyngeal squamous cell carcinoma?

Hollings Cancer Center

What are we doing to improve outcomes for recurrent oropharyngeal squamous cell carcinoma?

Review

The Lack of Standardized Outcomes for Surgical Salvage of HPV-Positive Recurrent Oropharyngeal Squamous Cell Carcinoma: A Systematic Scoping Review

April N. Taniguchi ^{1,2}, Sarah R. Sutton ^{1,3}, Shaun A. Nguyen ^{1,*}, Alexandra E. Kejner ¹

Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA

College of Medicine, University of Central Florida, Orlando, FL 32827, USA

³ School of Medicine, University of Nevada, Reno, NV 89557, USA

Correspondence: nguyensh@musc.edu; Tel.: +1-843-792-1356

What are we doing to mitigate adverse outcomes for recurrent oropharyngeal squamous cell carcinoma?

Salvage surgery often remains a key treatment option for locoregional recurrent oropharyngeal squamous cell carcinoma

April N. Taniguchi ^{1,2}, Sarah R. Sutton ^{1,3}, Shaun A. Nguyen ^{1,*}, Alexandra E. Kejner ¹

Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA

College of Medicine, University of Central Florida, Orlando, FL 32827, USA

School of Medicine, University of Nevada, Reno, NV 89557, USA

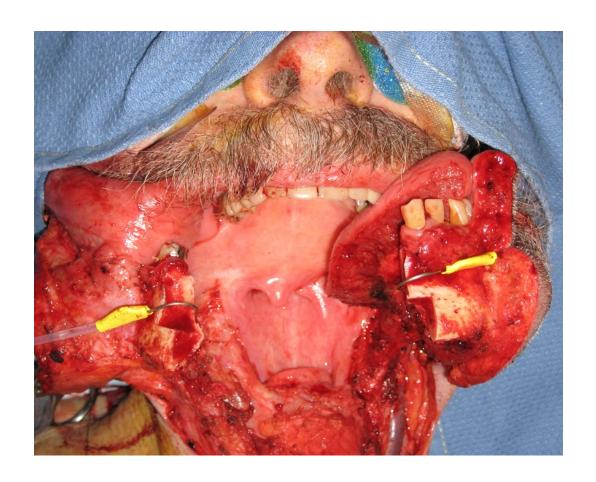
Correspondence: nguyensh@musc.edu; Tel.: +1-843-792-1356

What are we doing to mitigate adverse outcomes for recurrent oropharyngeal squamous cell carcinoma?

Salvage surgery often remains a key treatment option for locoregional recurrent oropharyngeal squamous cell carcinoma

Traditional approaches to the oropharynx are morbid and carry significant long term functional limitations

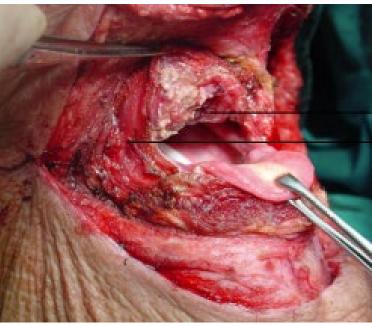
and William G. Albergotti 1

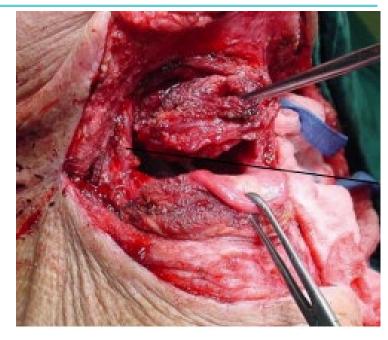

Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA

College of Medicine, University of Central Florida, Orlando, FL 32827, USA

School of Medicine, University of Nevada, Reno, NV 89557, USA

Correspondence: nguyensh@musc.edu; Tel.: +1-843-792-1356


Lip-split mandibulotomy



- -Excellent access, good for significant trismus
- -Must osteotomize mandible (often radiated in salvage setting)
- -Traditionally requires lip split incision
- -Divided floor of mouth musculature
- -CNXII often non-salvageable

Transhyoid and lateral pharyngotomy

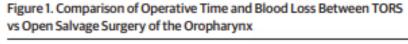
Offers excellent exposure to lateral pharynx and even hypopharynx but **ENTRY IS OFTEN BLIND**

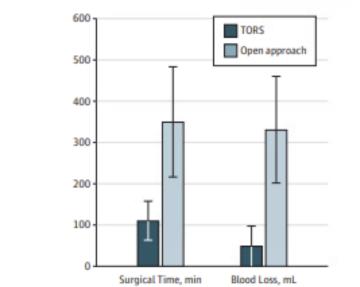
Can be used for tumors involving the mandible (w/ posterior mandibulectomy & offers ability to address trismus if needed)

Limited access to base of tongue if no mandibulectomy and no pull through is performed.

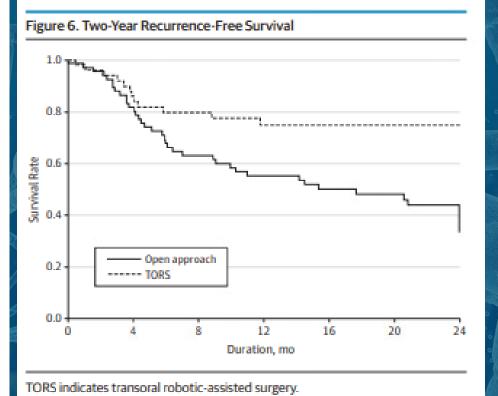
Transhyoid and lateral pharyngotomy

Offers excellent exposure to lateral pharynx and even hypopharynx but **ENTRY IS OFTEN BLIND**


Can be used for tumors involving the mandible (w/ posterior mandibulectomy & offers ability to address trismus if needed)


Limited access to base of tongue if no mandibulectomy and no pull through is performed.

Original Investigation


Salvage Surgery for Recurrent Cancers of the Oropharynx Comparing TORS With Standard Open Surgical Approaches

Hilliary White, MD; Samuel Ford, BS; Benjamin Bush, MD; F. Christopher Holsinger, MD; Eric Moore, MD; Tamer Ghanem, MD, PhD; William Carroll, MD; Eben Rosenthal, MD; Larissa Sweeny, MD; J. Scott Magnuson, MD

TORS indicates transoral robotic-assisted surgery. Error bars indicate standard deviations.

Article

Transoral Robotic Surgery for the Salvage of Primarily Irradiated Oropharyngeal Squamous Cell Carcinomas Recurring at the Base of the Tongue: A Small Monoinstitutional Series

Samuele Frasconi ^{1,*} ^{1,*} Davide Rizzo ^{1,2} ^{1,2} Roberto Gallus ³, Nikolaos Machouchas ¹, Sergio Cannova ², Dan Marian Fliss ⁴, Jacopo Galli ⁵ and Francesco Bussu ^{1,2}

Table 2. Summary of the clinical history of the 4 study patients who underwent salvage TORS.

Case	Age at Diagnosis (Years)	сT	cN	HPV Status (E6/E7 mRNA on Fresh Sample)	Time to TORS Salvage (Months)	Pre-Op Composite MDADI	rT#	rN#	G, PNI	Post-Op Composite MDADI	Post- TORS Relapse	Dead/Alive	Last Follow-Up After TORS (Months)
1 *	49	4	2c	Positive	65	69	1	0	П, -	73	No	Alive	105
2 *	60	4	2c	Negative	24	68	2	0	Ш, -	66	No	DOC	72
3	69	1	2b	Negative	18	66	2	0	III, +	-	Yes (time to relapse 3 months)	DOD	11
4	74	3	2c	Negative	9	68	2	2c	II, -	70	No	Alive	96

cT, clinical T classification; cN, clinical N classification; HPV, human papilloma virus; TORS, transoral robotic surgery; MDADI, MD Anderson Dysphagia Inventory; rT, T classification of the recurrence; rN, N classification of recurrence; DOC, dead of other causes; DOD, dead of disease; PNI, perineural invasion, + present, - absent. * Details of Cases 1 and 2 are shown in Figure 1. # The r staging always corresponded to the final pathological (p) staging.

Articl

Transoral Robotic Surgery for the Salvage of Primarily Irradiated Oropharyngeal Squamous Cell Carcinomas Recurring at the Base of the Tongue: A Small Monoinstitutional Series

Samuele Frasconi ^{1,*} ⁶, Davide Rizzo ^{1,2} ⁶, Roberto Gallus ³, Nikolaos Machouchas ¹, Sergio Cannova ², Dan Marian Fliss ⁴, Jacopo Galli ⁵ and Francesco Bussu ^{1,2} ⁶

What about larger tumors which require reconstruction?

Case	Age at Diagnosis (Years)	сT	cN	HPV Status (E6/E7 mRNA on Fresh Sample)	Time to TORS Salvage (Months)	Pre-Op Composite MDADI	rT#	rN#	G, PNI	Post-Op Composite MDADI	Post- TORS Relapse	Dead/Alive	Last Follow-Up After TORS (Months)
1 *	49	4	2c	Positive	65	69	1	0	II, -	73	No	Alive	105
2 *	60	4	2c	Negative	24	68	2	0	III, -	66	No	DOC	72
3	69	1	2b	Negative	18	66	2	0	III, +	-	Yes (time to relapse 3 months)	DOD	11
4	74	3	2c	Negative	9	68	2	2c	II, -	70	No	Alive	96

cT, clinical T classification; cN, clinical N classification; HPV, human papilloma virus; TORS, transoral robotic surgery; MDADI, MD Anderson Dysphagia Inventory; rT, T classification of the recurrence; rN, N classification of recurrence; DOC, dead of other causes; DOD, dead of disease; PNI, perineural invasion, + present, - absent. * Details of Cases 1 and 2 are shown in Figure 1. # The r staging always corresponded to the final pathological (p) staging.

Ear, Nose & Throat Journal Volume 100, Issue 10_suppl, December 2021, Pages 1113S-1118S © The Author(s) 2020, Article Reuse Guidelines https://doi.org/10.1177/0145561320937627

Case Series

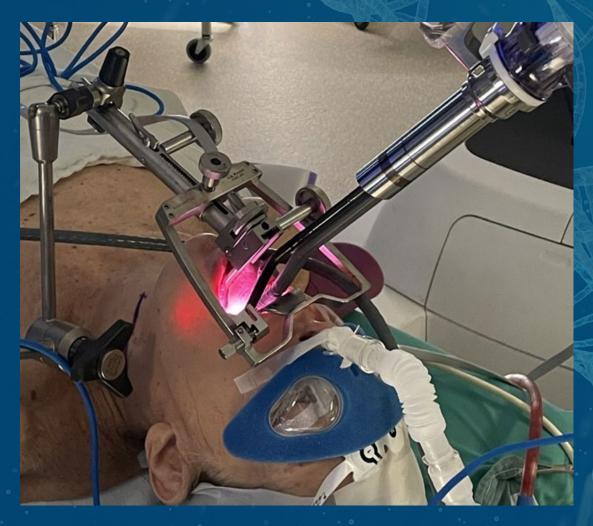
Feasibility of Free Flap Reconstruction Following Salvage Robotic-Assisted Resection of Recurrent and Residual Oropharyngeal Cancer in 3 Patients

Andrew Williamson, MRCS ENT (D), Matthew Haywood, MRCS ENT, and Zaid Awad, FRCS ORL-HNS

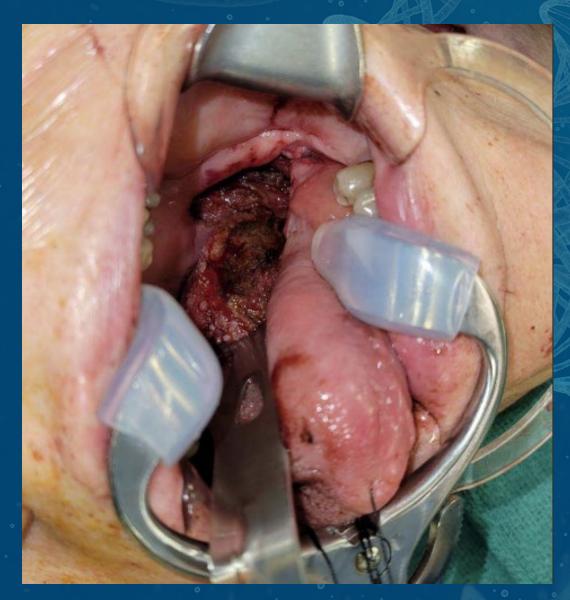
Hollings Cancer Center

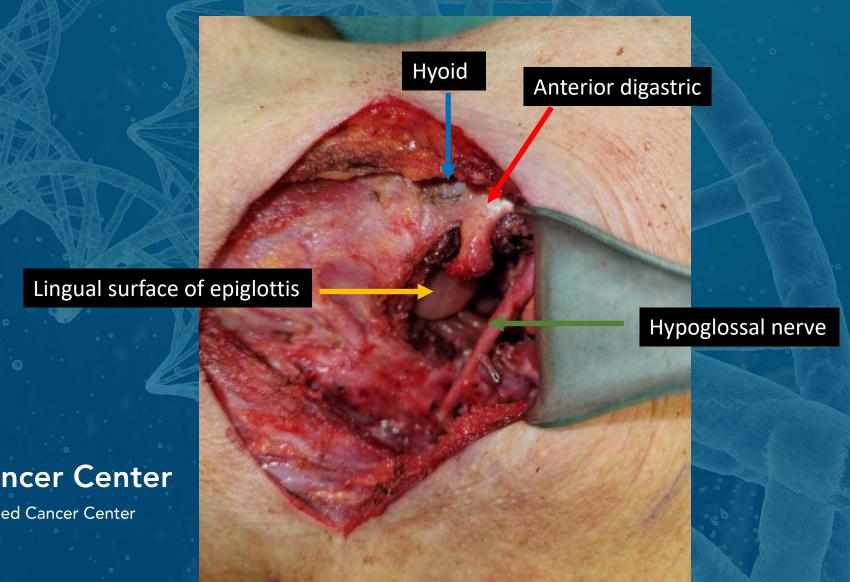
Ear, Nose & Throat Journal Volume 100, Issue 10_suppl, December 2021, Pages 1113S-1118S © The Author(s) 2020, Article Reuse Guidelines https://doi.org/10.1177/0145561320937627

Case Series



Feasibility of Free Flap Reconstruction Following
Salvage Robotic-Assisted Resection of Recurrent and Residual
Oropharyngeal Cancer in 3 Patients


Andrew Williamson, MRCS ENT (D), Matthew Haywood, MRCS ENT, and Zaid Awad, FRCS ORL-HNS


Hollings Cancer Center

Hollings Cancer Center

But does the extra time and resources required for TORS-assisted surgery make a difference?

Methods

- -Retrospective review of all patients who underwent TORS assisted oropharyngectomy with free flap reconstruction from 01/2012 to 03/2015
- -and subsequent secondary review using same inclusion criteria of a prospective registry data from the MD Anderson Oropharynx Cancer Registry Patient-Reported and Functional Core from 04/2015 to 07/2023
- -Reviewed descriptive variables including patient demographics, tumor characteristics and staging (AJCC 8th Ed), operative details, complications, and functional outcomes.
- -Retrospectively reviewed patient reported outcomes:
 - -MD Anderson Dysphagia Inventory (MDADI)
 - -Performance Scale for Head and Neck Cancer Patients (PSS-HN)

Age in years at time of surgery, mean (SD)	63.9 (10.4)	Pathology	
Sex		Squamous Cell Carcinoma	41 (87.2)
Female (%)	5 (10.6)	Other	6 (12.8)
Male (%)	42 (89.4)	Persistent/Recurrent Tumor	
Tobacco use status		Yes	37 (78.7)
Never (%)	17 (36.2)	No	10 (21.3)
Former (%)	23 (48.4)	Previous Radiation Therapy	
Current (%)	7 (14.9)	Yes	39 (83)
Comorbidity requiring chronic medication		No	8 (17)
Yes (%)	31 (66)	Previous Systemic Therapy	
No (%)	16 (34)	Yes	36 (76.6)
Primary tumor site		No	11 (23.4)
Tonsil (%)	15 (31.9)	Neoadjuvant Systemic Therapy	
Base of tongue (%)	26 (55.3)	Yes	23 (48.9)
Other oropharynx (%)	5 (10.6)	No	24 (51.1)
Other (%)	1 (2.1)		
Clinical T Stage (AJCC Staging Manual, 8th Ed.)			
1	18 (39.1)		
2	21 (45.7)		
3	4 (8.7)	_	
4	3 (6.5)		

2

3

32 (69.6) 7 (15.2)

6 (13.0)

1 (2.2)

Clinical N Stage (AJCC Staging Manual, 8th Ed.)

Age in years at time of surgery, mean (SD)	63.9 (10.4)	Pathology
Sex		Squamous Cell Carcinoma
Female (%)	5 (10.6)	Other
Male (%)	42 (89.4)	Persistent/Recurrent Tumor
Tobacco use status		Yes
Never (%)	17 (36.2)	No
Former (%)	23 (48.4)	Previous Radiation Therapy
Current (%)	7 (14.9)	Yes
Comorbidity requiring chronic medication		No
Yes (%)	31 (66)	Previous Systemic Therapy
No (%)	16 (34)	Yes
Primary tumor site		No
Tonsil (%)	15 (31.9)	Neoadjuvant Systemic Therapy
Base of tongue (%)	26 (55.3)	Yes
Other oropharynx (%)	5 (10.6)	No
Other (%)	1 (2.1)	
Clinical T Stage (AJCC Staging Manual, 8 th Ed.)		47 patients include
1	18 (39.1)	-47 patients include
2	21 (45.7)	000/ mala
3	4 (8.7)	-89% male
4	3 (6.5)	
Clinical N Stage (AJCC Staging Manual, 8 th Ed.)		-48% former smoke
0	32 (69.6)	
1	7 (15.2)	-84.8% cT1 and cT2
2	6 (13.0)	9 110,0 01 2 0110.01

1 (2.2)

nts included

mer smokers

11 and cT2 tumors

-87.2% SCC, others included mucoepidermoid carcinoma and adenoid cystic carcinoma

41 (87.2) 6 (12.8)

37 (78.7) 10 (21.3)

39 (83) 8 (17)

36 (76.6) 11 (23.4)

23 (48.9) 24 (51.1)

-83% previously treated with XRT

-49% treated with neoadjuvant systemic therapy

3

Characteristic	All patients (n= 47)
Extent of Resection	
Pharyngectomy alone (%)	31 (67)
Pharyngectomy with partial glossectomy (%)	14 (29.8)
Pharyngectomy with partial laryngectomy (%)	3 (6.4)
Tumor specimen volume, cm³ (SD)	34.4 (39.4)
Neck Dissection	
None (%)	5 (10.6)
Ipsilateral (%)	38 (80.9)
Bilateral (%)	4 (8.5)
Flap Type	
Thigh-based flap (%)	22 (46.8)
Forearm-based flap (%)	16 (34.0)
Lateral arm flap (%)	6 (12.8)
Other (%)	3 (6.4)
Recipient Artery	
Facial (%)	24 (51.1)
Superior Thyroid (%)	15 (31.9)
Lingual (%)	4 (8.5)
Transverse Cervical (%)	3 (6.4)
External carotid (%)	1 (2.1)
Recipient Vein	
Facial (%)	20 (42.6)
Other branch of internal jugular vein (%)	19 (40.4)
External jugular vein (%)	6 (12.8)
Transverse cervical vein (%)	2 (4.3)
Tracheostomy	
Yes (%)	47 (100)
No (%)	0 (0)
Enteral Access	
Percutaneous endoscopic gastrostomy tube (%)	31 (66.0)
Previous feeding tube placed (%)	8 (17.0)
Feeding tube placed post-op (%)	5 (10.6)
Nasogastric feeding tube (%)	3 (6.4)

-81% unilateral neck dissection

-Other flaps included SCIP, MSAP, and PAP

-83% used facial artery or superior thyroid artery as recipient

-All patients receive tracheostomy

-93.6% already had, or received gastrostomy tube in perioperative period

Characteristic	All patients (n= 47)
Total Complications	11 (23.4)
Flap Complications	
Partial flap failure (%)	1 (2.1)
Total flap failure (%)	0 (0)
Return to OR for flap compromise (%)	0 (0)
Bleeding (requiring return to OR) (%)	2 (4.3)
Airway emergency (%)	0 (0)
Medical complication requiring readmission (%)	8 (17.0)

- -Overall, 23.4% complication rate
- -Low rate of flap failure
- -Medical complications included pneumonia, myocardial infarction, failure to thrive

Characteristic	All patients (n= 47)	-Short hospital stay on average
Length of hospital stay, days, mean (SD)	8.0 (5.2)	-Short nospital stay on average
Trach dependence at last follow up		
Yes (%)	7 (14.9)	
No (%)	40 (85.1)	-85% of patients are able to be
Days to first MBS (SD)	28.7 (13.4)	decannulated
Days to first oral intake (SD)	36.4 (32.6)	
Aspiration on first MBS		
Yes (%)	19 (40.4)	-High rate of early aspiration on
No	28 (59.6)	
Anastomotic leak on first MBS		MBS
Yes (%)	5 (10.6)	-Low rate of leak
No (%)	42 (89.4)	EOW fate of leak
Days to feeding tube removal, mean (SD)	102.1 (71.6)	
Feeding tube removed at last follow up		
Yes (%)	22 (50.0)	-50% of patients with long term
No (%)	22 (50.0)	feeding tube

MDADI: MD Anderson Dysphagia Inventory

Validated, self administered 20-item measure of swallowing-related quality of life ranging from 20 (worst) to 100 (best)

Composite score change in >10 is widely regarded as clinically relevant significant difference

M. D. Anderson Dysphagia Inventory

This questionnaire asks for your views about your swallowing ability. This information will help us understand how you feel about swallowing. The following statements have been made by people who have problems with their swallowing. Some of the statements may apply to you.

Please read each statement and circle the response which best reflects your experience in the past week.

1 = Strongly agree	2 = Agree	3= No Opinion	4= Disagree	5= Strongly Disagree
(1) My swallowing ability limits n	ny day-to-day ac	tivities		012345
(2) I am embarrassed by my eat	ing habits			012345
(3) People have difficulty cookin	g for me			0 1 2 3 4 5
(4) Swallowing is more difficult a	t the end of the	day		012345
(5) I do not feel self-conscious w	hen I eat			0 1 2 3 4 5
(6) I am upset by my swallowing	problem			0 1 2 3 4 5
(7) Swallowing takes great effor	t			0 1 2 3 4 5
(8) I do not go out because of m	y swallowing pro	blem		012345
(9) My swallowing difficulty has	caused me to los	se income		012345
(10) It takes me longer to eat be	cause of my swa	allowing problem		0 1 2 3 4 5
(11) People ask me, "Why can't	you eat that?"			0 1 2 3 4 5
(12) Other people are irritated by	y my swallowing	problem		0 1 2 3 4 5
(13) I cough when I try to drink li	iquids			0 1 2 3 4 5
(14) My swallowing problems lin	nit my social and	personal life		0 1 2 3 4 5
(15) I feel free to go out to eat w	ith my friends, n	eighbors and relatives.		012345
(16) I limit my food intake becau	se of my swallov	ving difficulty		012345
(17) I cannot maintain my weigh	t because of my	swallowing problem		012345
(18) I have low self-esteem beca	ause of my swall	owing problem		0 1 2 3 4 5
(19) I feel that I am swallowing a	huge amount of	f food		0 1 2 3 4 5
(20) I feel excluded because of	my eating habits			0 1 2 3 4 5

PSS-HN: Performance Status Scale for Head and Neck Cancer Patients

PERFORMANCE STATUS SCALE FOR HEAD AND NECK CANCER PATIENTS: PSS-HN

Significant predictor of quality of life

Easy to interpret and administer

Score of 0 = completely tube feed dependent

Patient Name	ID#//_/_/_/_/	Date ////

NORMALCY OF DIET /_/_/_/

- 100 Full diet (no restrictions)
- 90 Full diet (liquid assist)
- 80 All mea
- 70 Raw carrots, celery
- 60 Dry bread and crackers
- Soft chewable foods (e.g., macaroni, canned/soft fruits, cooked vegetables, fish, hamburger, small pieces of meat)
- 40 Soft foods requiring no chewing (e.g., mashed potatoes, apple sauce, pudding)
- 30 Pureed foods (in blender)
- 20 Warm liquids
- 0 Cold liquids
- 0 Non-oral feeding (tube fed)

PUBLIC EATING /_/_/_/


- 100 No restriction of place, food or companion (eats out at any opportunity)
- 75 No restriction of place, but restricts diet when in public (eats anywhere, but may limit intake to less "messy" foods (e.g., liquids)
- 50 Eats only in presence of selected persons in selected places
- 25 Eats only at home in presence of selected persons
- 0 Always eats alone
- 999 Inpatient

UNDERSTANDABILITY OF SPEECH /__/_/

- 100 Always understandable
- 75 Understandable most of the time; occasional repetition necessary
- 50 Usually understandable; face-to-face contact necessary
- 25 Difficult to understand
- Never understandable; may use written communication

List MA, Ritter-Sterr C, Lansky SB. A Performance Status Scale for Head and Neck Cancer Patients. Cancer. 66:564-569, 1990

Patient reported outcomes

Mean MDADI composite score preoperatively, then at 0-3 months, 3-6 months, and > 6 months post operatively following salvage or opharyngectomy with free flap reconstruction. Error bars show standard deviation.

Mean PSS-HN normalcy of diet scores preoperatively, then at 0-3 months, 3-6 months, and > 6 months post operatively following salvage oropharyngectomy with free flap reconstruction. Error bars show standard deviation.

Incorporate DIGEST score from preoperative and postoperative modified barium swallow data

Hollings Cancer Center

Incorporate DIGEST score from preoperative and postoperative modified barium swallow data

Multivariate regression analysis of patient and surgical predictors of:

- G-Tube dependence
- Tracheostomy dependence
- Short and long term DIGEST and MDADI scores

Hollings Cancer Center

Incorporate DIGEST score from preoperative and postoperative modified barium swallow data

Multivariate regression analysis of patient and surgical predictors of:

- G-Tube dependence
- Tracheostomy dependence
- Short and long term DIGEST and MDADI scores

Review impact of re-irradiation and/or adjuvant chemo/immunotherapy

Hollings Cancer Center

Incorporate DIGEST score from preoperative and postoperative modified barium swallow data

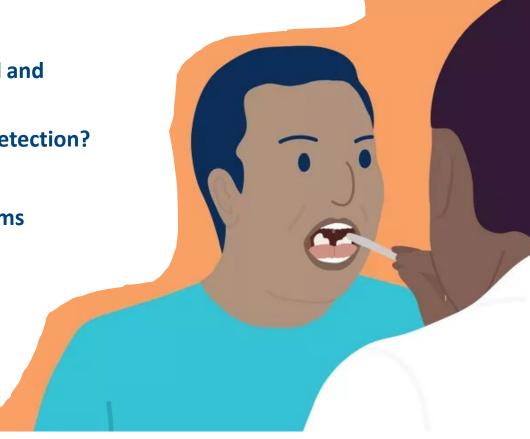
Multivariate regression analysis of patient and surgical predictors of:

- G-Tube dependence
- Tracheostomy dependence
- Short and long term DIGEST and MDADI scores

Review impact of re-irradiation and/or adjuvant chemo/immunotherapy

Review oncologic data for:

- Local regional and distant disease control
- Neoadjuvant chemo/immunotherapy as predictors of improved functional outcomes


Hollings Cancer Center

Routine and frequent follow up

Early detection may play a role in improved functional and oncologic outcomes

Will ctDNA further aid in meaningful early detection?

Early and lifelong engagement with dedicated SLP teams

Through and thoughtful multidisciplinary team of experts is key

Careful patient selection and preoperative counseling paramount

Most patients are likely to need multidisciplinary treatment plans

These select group of patients should be considered for clinical trials

Hollings Cancer Center

Despite the complex nature, complications in this cohort are low

TORS assisted approach:

- -Yields acceptable functional outcomes (and perhaps improved compared to historical controls)
- -Affords better margin control than blind pharyngotomy

Hollings Cancer Center

Despite the complex nature, complications in this cohort are low

TORS assisted approach:

- -Yields acceptable functional outcomes (and perhaps improved compared to historical controls)
- -Affords better margin control than blind pharyngotomy

TORS assisted oropharyngectomy with free flap reconstruction is a safe and effective alternative to traditional open approaches

Hollings Cancer Center

Thanks!

Z-Hye Lee, MD Neil Gross, MD Ryan Goepfert, MD Peirong Yu, MD Katherine Hutchenson, PhD Carly Barbon, PhD James Paget, MD PhD Ariana Sahli, CCRP

Questions?

Hollings Cancer Center

Functional Outcomes After Robotic Assisted Salvage Surgery for Oropharyngeal Cancer

Michael Bobian, MD

Department of Otolaryngology - Head and Neck Surgery

Medical University of South Carolina

39th Annual F. Johnson Putney Lectureship in Head and Neck Cancer

October 24, 2025