

Introduction to Vestibular Laboratory Tests

Danielle Cassels

Disclosures

MUSC Health
Medical University of South Carolina

No financial disclosures or conflicts of interest.

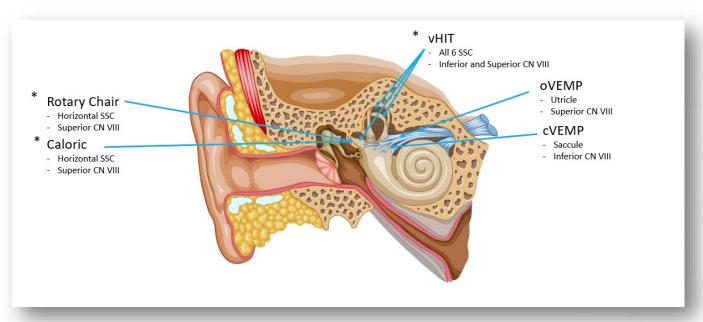
No relevant non-financial relationship to disclose.

Learning Objectives

MUSC Health
Medical University of South Carolina

- Describe vHIT, o/cVEMPs, VNG and Rotary Chair
- 2. Understand which portion of the system each is testing
- 3. Have a basic understanding of the results

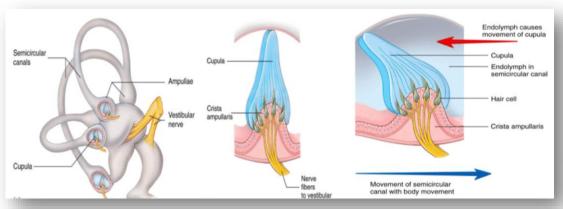
Vestibular Evaluation


MUSC Health
Medical University of South Carolina

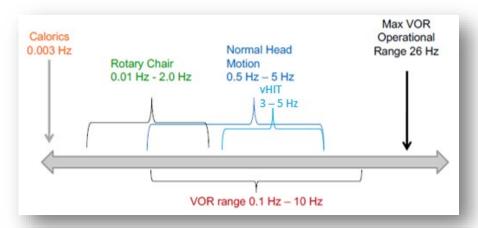
- VNG (or ENG)
- Caloric Irrigations
- Rotary Chair
- vHIT
- VEMPs

Testing the System

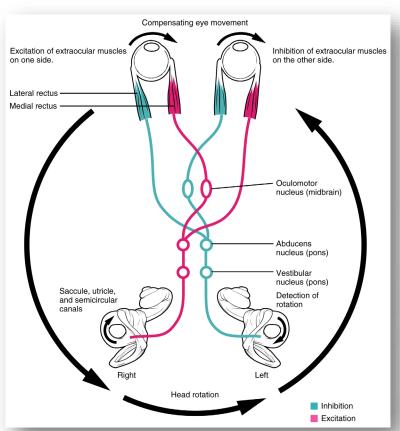
- 8th nerve (inferior and superior portions of the nerve)
- Semicircular canals
- Saccule
- Utricle



Semicircular Canals

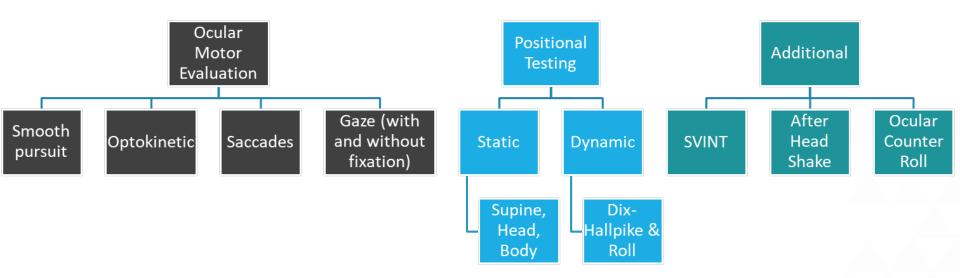

- Responsible for angular head movement
 - Lateral / Horizontal
 - Anterior
 - Posterior

- Work in three matched pairs
 - Right Lateral Left Lateral
 - Right Anterior Left Posterior (RALP)
 - Left Anterior Right Anterior (LARP)


Vestibulo-Ocular Reflex

- Compensatory eye movement
- Stabilization of gaze
- Postural control

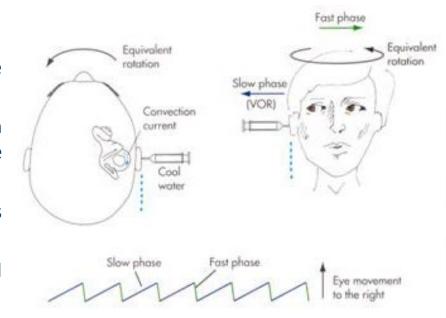
(Leigh & Brandt, 1992)
Zalewski, C. PhD. (2015). Fundalentals of Roational Vestibular Assessment [1-28].


Vestibular Evaluation

- VNG (or ENG)
- Caloric Irrigations
- Rotary Chair
- vHIT
- VEMPs

Videonystagmography (VNG)

Vestibular Evaluation

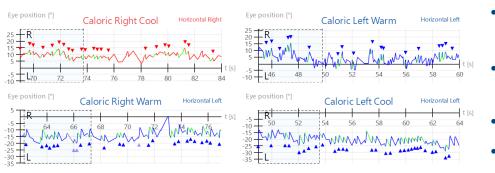


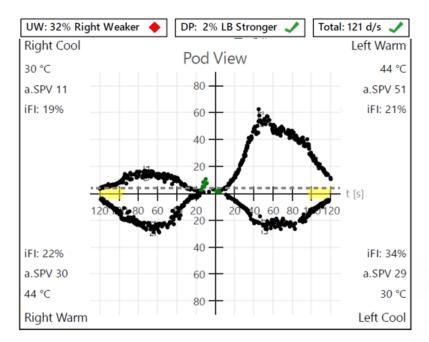
- VNG (or ENG)
- Caloric Irrigations
- Rotary Chair
- vHIT
- VEMPs

Caloric Irrigations

- Testing VOR of the horizontal SSC
- Head is at 30 degrees
- Warm and cool water (or air) presented into the ear canal
- Changes the temperature of the ear which changes the density of the endolymph in the horizontal SSC
- An absent or weak response to caloric irrigations are indicative of a peripheral lesion
- UW (unilateral weakness) or RVR (reduced vestibular response) is calculated
 - ~ 25% or greater is considered a unilateral weakness

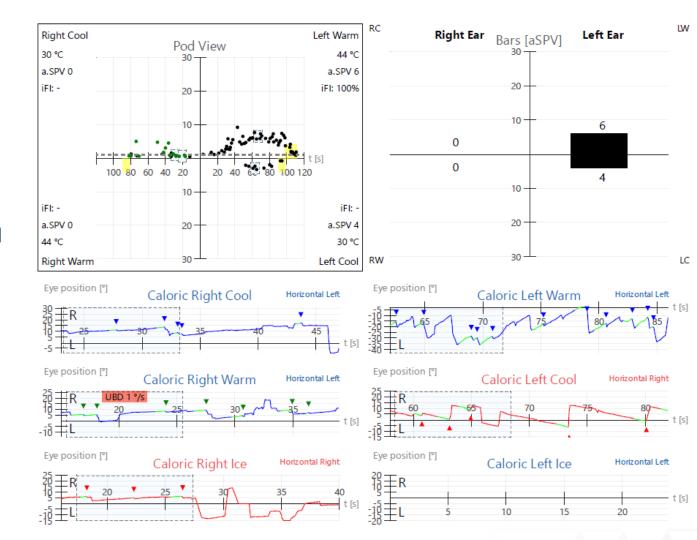
Calorics: The Setup


- Otoscopy prior to confirm TM is visible and intact and ear is dry and healthy
- Head at 30 degrees
- Visor over the eyes (fixation denied)
- Irrigator placed into canal
 - ANSI standards recommend warm water first then cool and to start with the right ear
- Basin/towel under ear to catch water
- Instructions are very important
- Tasking patient necessary



Calorics: The Results

- Nystagmus direction changes with temperature change
- "COWS"
 - Cool opposite
 - Warm same
- Peak nystagmus from each irrigation used for calculations



- UW or RVR: is there a weaker ear?
 - (LC+LW) -(RC+RW) / (LC+LW+RC+RW) x 100
- Direction Preponderance: was the nystagmus stronger in one direction?
- Total response RE/LE: useful to diagnose BVH
- Fixation Index: are they able to suppress the response with fixation?

Calorics: BVH

- Total LE <12 d/s &
 Total RE <12 d/s =
 BVH (Jacobson and
 Newman, 1993)
- Debate about BVH criterion
- Be consistent within your clinic

Ice Water

Ice Water Calorics:

- Used when there is no response from caloric irrigations
- Ice-water is used to determine if any residual function

The Setup:

- Use ice made with sterilized water
- Turn head for test ear up
- Inject 2 cc ice water into canal
- After 20 seconds the head is returned to center and ear is emptied onto the towel
- Can be performed two ways:
 - If no spontaneous nystagmus is visualized
 - Head is at 30 degrees to irrigate
 - If spontaneous is present
 - Supine to irrigate if nystagmus is present patient should be rolled to prone
 - Nystagmus should disappear or change directions

Vestibular Evaluation

MUSC Health
Medical University of South Carolina

- VNG (or ENG)
- Caloric Irrigations
- Rotary Chair
- vHIT
- VEMPs

Rotary Chair

Sinusoidal Harmonic Acceleration

Phase

Lead – Peripheral
 Lag - Central

Gain

- Low Non-localizing (typically peripheral)
- High Central

Asymmetry

- Uncompensated vs Compensated
- Non-lateralizing

60 deg/sec Step-Test

Time constant

- Non-localizing
- Fast decay (typically peripheral)
- Slow decay (typically central)

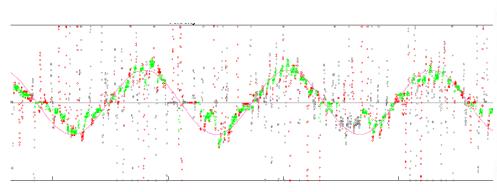
VVOR

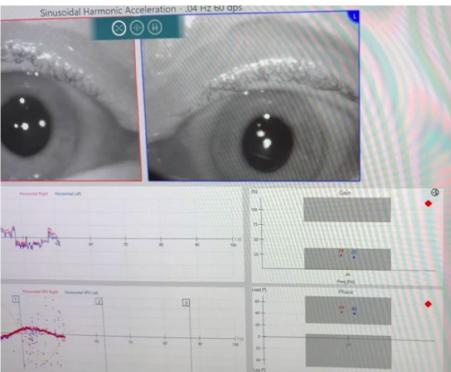
Central

Fixation Suppression

Central

SVV

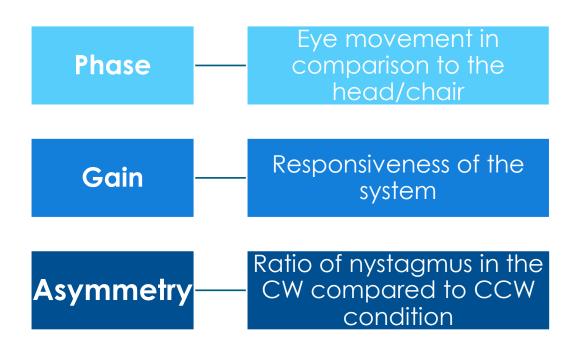

Utricle



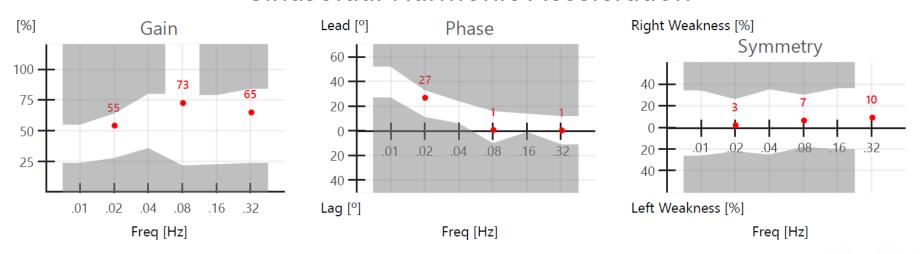
Sinusoidal Harmonic Acceleration (SHA)

- Testing VOR of horizontal SSC
- Chair rotates back and forth in the horizontal plane
- Chair rotates in one direction until peak velocity (typically 60 deg/sec) then slows and reverses
- Plotting eye velocity with chair velocity

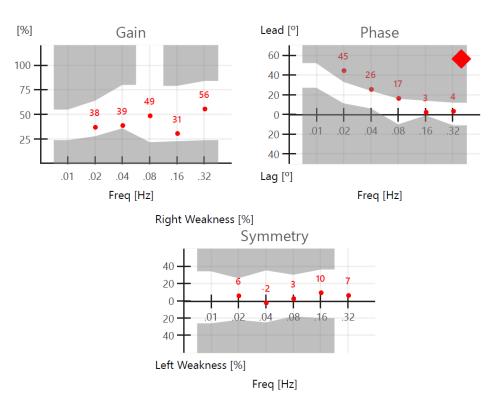
SHA: The Setup

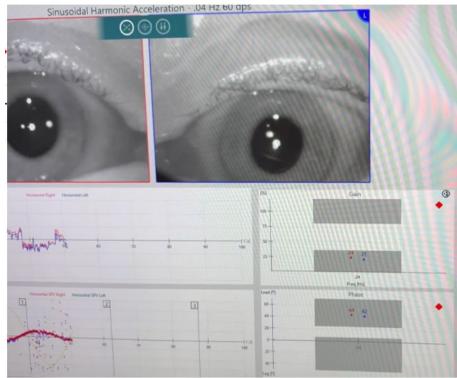

- Seated upright with head pitched forward at 30 degrees to stimulate the horizontal SSC
- Seatbelt, head straps, ankle straps in place
- Vision denied (enclosure or visor)
- Tasking while testing is essential

Sinusoidal Harmonic Acceleration (SHA)

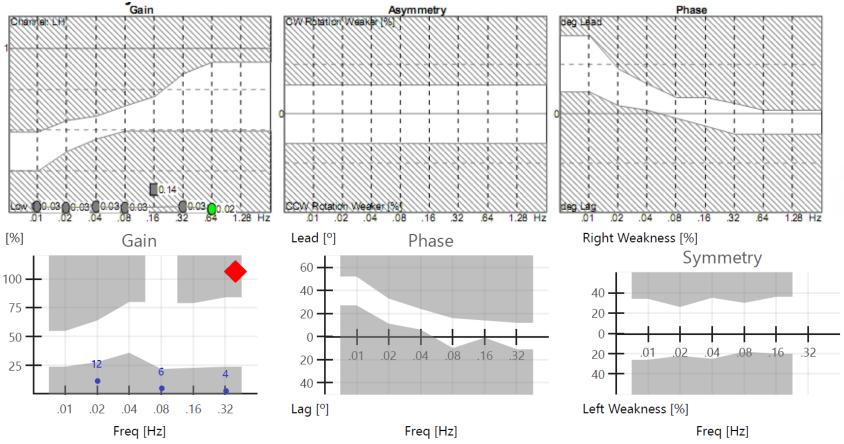


SHA: The Results




Sinusoidal Harmonic Acceleration

SHA: Unilateral Peripheral Weakness



SHA: BVH

Vestibular Evaluation

MUSC Health
Medical University of South Carolina

- VNG (or ENG)
- Caloric Irrigations
- Rotary Chair
- vHIT
- VEMPs

Video Head Impulse Test (vHIT)

MUSC Health
Medical University of South Carolina

VOR of all 6 semicircular canals

 Testing lateral, RALP and LARP planes

Quick test with minimal contraindications

Eye and head movement should be equal and

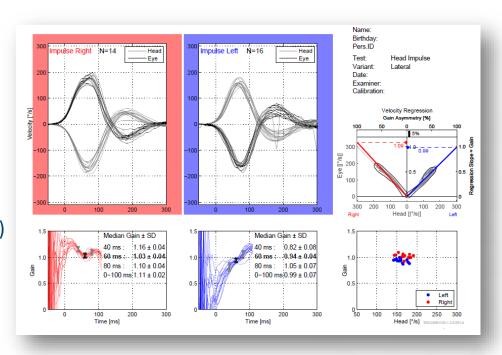
opposite

 Looking for corrective eye movements

vHIT: The Setup

- Goggles with high-speed camera placed
 - Need to be tight to avoid slip
- Target is visualized
 - Earth-fixed
- Head is turned 20-30 degrees off target
 - Passive and unpredictable
 - 150 degrees/sec or greater head velocity
- Patient instructed to keep gaze on target the entire time
 - Or return to target if lost

vHIT: The Results

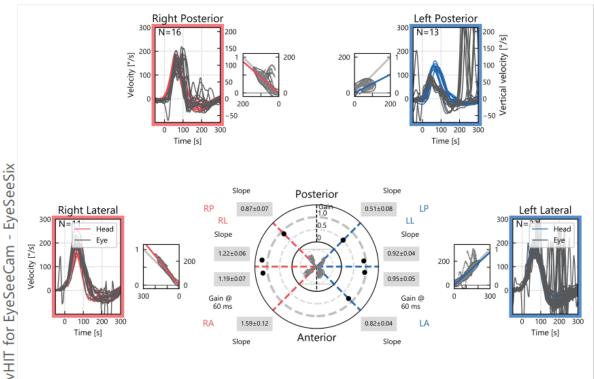


Normal:

- Gain is ~0.75 -1.2 (clinic norms may vary)
- No corrective saccades

Abnormal:

- Gain < 0.75
- Corrective saccades
 - Covert (during head movement)
 - Overt (after head movement)

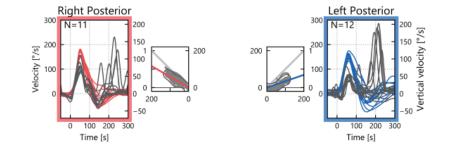

vHIT: Unilateral

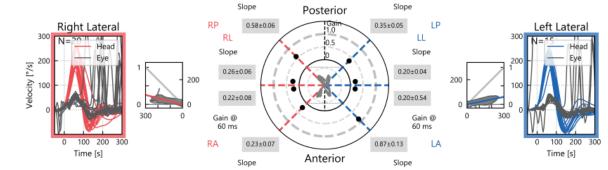
Gain:

Low gain in LP (0.51)

Saccades:

- Large overt saccades in LP
- Large covert and overt saccades in LL


vHIT: BVH

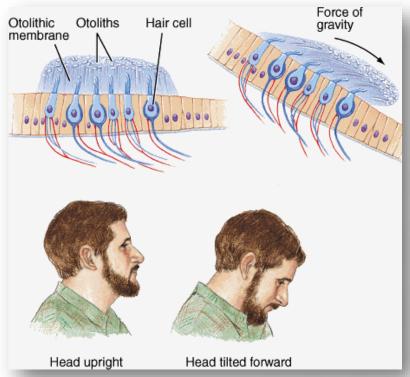

• Gain:


Low gain in LP, RP, RL, LL, and RA

Saccades:

- Large overt saccades in RP, LP, LL, LA
- Large covert and overt saccades in RL, RA

Vestibular Evaluation


MUSC Health
Medical University of South Carolina

- VNG (or ENG)
- Caloric Irrigations
- Rotary Chair
- VHIT
- VEMPs

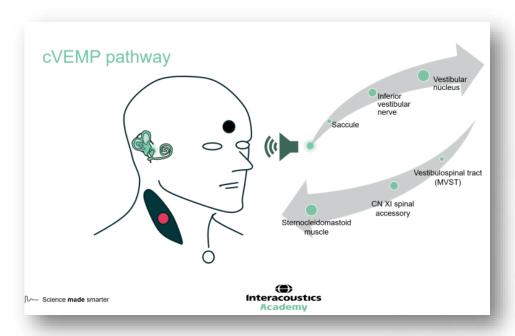
Vestibule

MUSC Health
Medical University of South Carolina

- Responsible for linear movements
 - Saccule up/down
 - Utricle forward/backward

https://bio3400.nicerweb.net/Locked/media/med/otolith.html

VEMPS



- V VESITBULAR
 - Originates from the inner ear
- E EVOKED
 - Elicit a response (by a stimulus)
- M MYOGENIC
 - Measuring from the muscle
- P POTENTIAL
 - Change in state (muscle activity)

Cervical VEMP (cVEMP)

- Testing saccule and inferior vestibular nerve
- Measure from the Sternocleidomastoid (SCM) muscle
- Ipsilateral response

 $\label{lem:https://www.interacoustics.com/academy/evoked-potentials/vemp/vestibular-evoked-myogenic-potentials$

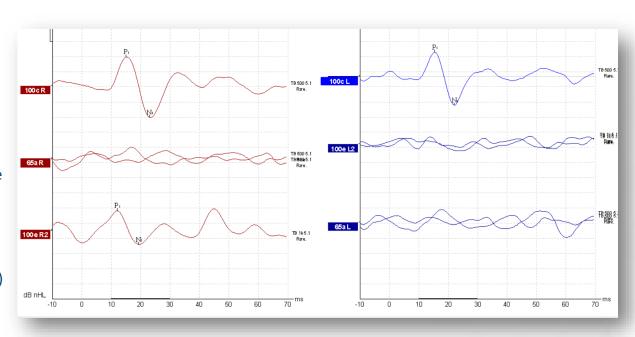
cVEMP: The Setup

MUSC Health
Medical University of South Carolina

- Normal middle ear function is needed for air conduction
 - If abnormal tympanograms or air-bone gaps on audiogram BC should be used
- Skin is cleaned and prepped for electrode placement
 - Confirm good impedances (<5kohms)
- SCM electrodes places symmetrically
 - Top 1/3rd of the muscle
- Head is turned away from stimulus and tuck chin to shoulder to contract the SCM
 - Muscle activity is monitored throughout

cVEMP: The Results

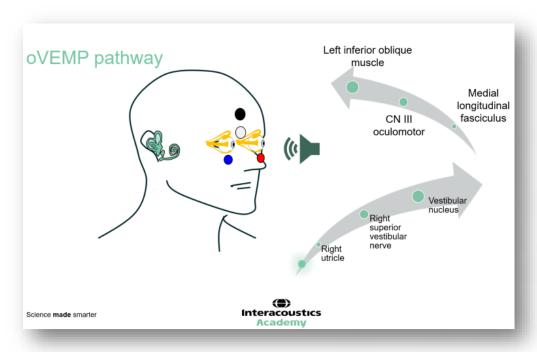
Amplitude


• $50 - 300 \,\mu\text{V}$

Latencies

- P1 ~15 ms
- N1 ~23 ms

Asymmetry


- calculated with the amplitude of the L/R responses at the maximum intensity
- AR = ((larger response smaller response) / (larger response + smaller response))
 x 100
- >36% (Young et al, 2002)

Ocular VEMP (oVEMP)

- Testing utricle and superior vestibular nerve
- Measure from the inferior oblique muscle under the eye
- Contralateral response

https://www.interacoustics.com/academy/evoked-potentials/vemp/vestibular-evoked-myogenic-potentials

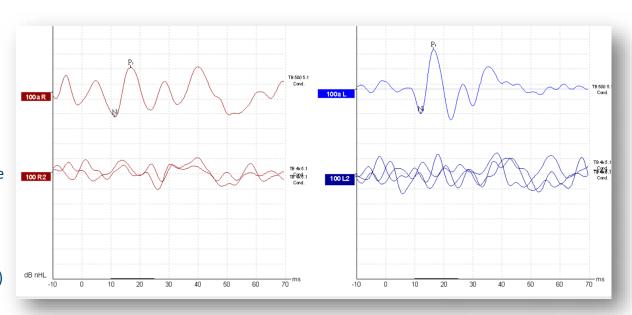
oVEMP: The Setup

MUSC Health
Medical University of South Carolina

- Normal middle ear function is needed for air conduction
 - If abnormal tympanograms or air bone gaps on audiogram, BC should be used
- Skin is cleaned and prepped for electrode placement
 - Confirm good impedances (<5kohms)
- Headphone placed in test ear (contralateral response)
- Gaze upward 30 degrees to contract the inferior oblique muscle

oVEMP: The Results

Amplitude


• 7 μV

Latencies

- N1 ~10 ms
- P1 ~15 ms

Asymmetry

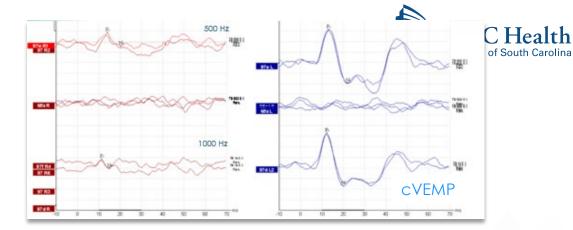
- Calculated with the amplitude of the L/R responses at the maximum intensity
- AR = ((larger response smaller response) / (larger response + smaller response))
 x 100
- >34% (Piker at al, 2011)

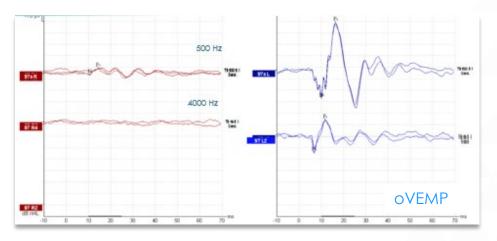
VEMP: SSCD

Amplitude

May see larger amplitudes

Asymmetry


 Larger response from SSCD ear


Threshold

 present reduced intensity (cVEMP)

Frequency Tuning

4k Hz response (oVEMP)

References

- Curthoys, I. S., Burgess, A. M., Manzari, L., & Pastras, C. J. (2022). A single fast test for semicircular canal dehiscence—oVEMP n10 to 4000 Hz—depends on stimulus rise time. Audiology Research, 12(5), 457-465.
- Hirsch, B. (1986). Computed sinusoidal harmonic acceleration. Ear and Hearing, 7(3), 198-203
- Jabbar, Azza. (2016). Introduction to Human Physiology.
- Jha, R. H., Piker, E. G., & Romero, D. (2022). Effects of age and middle ear on the frequency tuning of the cVEMP and oVEMP. Journal of the American Academy of Audiology, 33(05), 259-269.
- S. Kim, Y.M. Oh, J.W. Koo and J.S. Kim, Bilateral vestibulopathy: Clinical characteristics and diagnostic criteria, Otol Neurotol 32(5) (2011), 812–817.
- Kim, J. S., & Kim, H. J. (2022). Bilateral vestibulopathy: The causes, diagnosis, and treatments. Current Opinion in Neurology, 35(1), 98-106. https://doi.org/10.1097/WCO.000000000001014
- Lee, S. U., Kim, H. J., & Kim, J. S. (2020). Bilateral Vestibular Dysfunction. Seminars in neurology, 40(1), 40–48. https://doi.org/10.1055/s-0039-3402066Kroenke, K., Hoffman, R. M., & Einstadter, D. (2000). How common are various causes of dizziness? A critical review. Southern medical journal, 93(2), 160-7.
- Piker, E. G., Jacobson, G. P., McCaslin, D. L., Hood, L. J. (2011). Normal characteristics of the ocular vestibular evoked myogenic potential. J Am Acad Audiol, 22, 222–230
- Piker, E. G., Jacobson, G. P., Burkard, R. F., McCaslin, D. L., Hood, L. J. (2013). Effects of age on the tuning of the cVEMP and oVEMP. EarHear, 34, e65–e73
- Pollak, L., Kushnir, M., & Stryjer, R. (2006). Diagnostic value of vestibular evoked myogenic potentials in cerebellar and lower-brainstem strokes. Neurophysiologie Clinique/Clinical Neurophysiology, 36(4), 227-233.
- lonescu, E., Morlet, T., Froehlich, P., & Ferber-Viart, C. (2006). Vestibular assessment with Balance Quest: normative data for children and young adults. International journal of pediatric otorhinolaryngology, 70(8), 1457-1465.
- ElSherif, M., Reda, M. I., Saadallah, H., & Mourad, M. (2020). Eye movements and imaging in vestibular migraine. Acta otorrinolaringologica espanola, 71(1), 3-8. https://doi.org/10.1016/j.otorri.2018.10.001
- Jacobson, G. P., Shepard, N. T., Barin, K., Burkard, R. F., Janky, K., & McCaslin, D. L. (2020). Balance function assessment and management. Third edition. San Diego, CA: Plural Publishing.
- Reddy, T. M., Heinze, B., Biagio-de Jager, L., & Maes, L. (2023). Cervical and ocular vestibular evoked myogenic potentials: a comparison of narrowband chirp, broadband chirp, tone burst and click stimulation. International journal of audiology, 62(6), 579–586.
- Toh WL Rossell SL Castle DJ. Current visual scanpath research: a review of investigations into the psychotic, anxiety, and mood disorders. Compr Psychiatry, 2011: 52: 567–579.
- Young, Y. H., Wu, C. C., & Wu, C. H. (2002). Augmentation of vestibular evoked myogenic potentials: an indication for distended saccular hydrops. The Laryngoscope, 112(3), 509-512.
- Zalewski, C.K., McCaslin, D.L., Carlson, M.L. (2019). Rotary Chair Testing. In: Babu, S., Schutt, C., Bojrab, D. (eds) Diagnosis and Treatment of Vestibular Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-97858-1_6