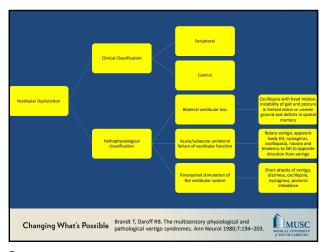


Disclosures


- Spiral Therapeutics
- · Vestibular Disorder Association
- None of the above disclosures are relevant to the talk and course

Changing What's Possible

MUSC MEDICAL UNIVERSITY

1

_

Semicircular Canab rotational vertigo, deviation of perceived straight-shead, sportuneous vestibular systagens with conflicting, actual indications in the Continue (see the C

4

3

5

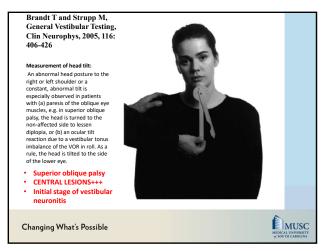
Head Posture and Ocular Alignment

- Ocular Misalignment is frequent
- Ocular tilt reaction: triad of head tilt, ocular torsion and skew deviation
- Subjective visual vertical

Changing What's Possible

Huh YE, Kim JS, Bedside Evaluation of dizzy patients, J Clin Neurol, 2013,9: 203-213 MUSC

Spontaneous Nystagmus


- Ask the patient to fixate on a stationary target in neutral gaze with best corrected vision.
- Repeat exam with Frenzel lenses to cancel fixation
- Description of the nystagmus:
 - Amplitude: grade I-III
 - Direction: horizontal? Vertical? Torsional?
 - Direction of quick phase
 - Fatigability
 - Effect of Fixation

Changing What's Possible

6

Goebel JA, The Ten-Minute Examination of the Dizzy Patient, Sem Neurol, 2001, 21: 391-398 Huh YE, Kim JS, Bedside Evaluation of dizzy patients, J Clin Neurol, 2013,9: 203-213

Skew deviation MUSC Changing What's Possible

8

Spontaneous Nystagmus

- Ask the patient to fixate on a stationary target in neutral gaze with best corrected vision. Repeat exam with Frensel lenses to cancel fixation
- · Description of the nystagmus:
 - Amplitude: grade I-III
 - Direction: horizontal? Vertical? Torsional?
 - Direction of quick phase
 - Fatigability

Changing What's Possible

Effect of Fixation
 Goebel JA, The Ten-Minute Examination of the Dizzy Patient, Sem Neurol, 2001, 21: 391-398
 Huh YE, Kim JS, Bedside Evaluation of dizzy patients, J Clin Neurol, 2013,9: 203-213

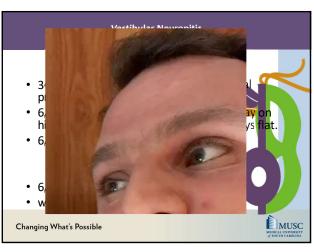
Spontaneous Nystagmus

Peripheral lesion (labyrinth and CN VIII)

Intense

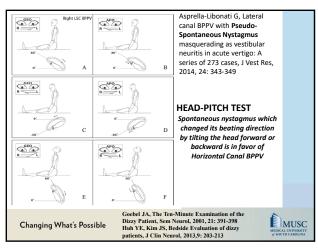
10

- Diminished with fixation
- · Direction fixed
- · Horizontal-rotary
- Intensifies when gazes in direction of fast phase: ALEXANDER'S LAW


Central lesion (brainstem, cerebellum, cerebrum)

- Less intense
- Direction-changing or gaze paretic or gaze evoked
- Horizontal, vertical, torsional or pendular
- Can diminish without fixation
- Examples: Periodic Alternating Nystagmus, Congenital Nystagmus, Lesions of the midline cerebellum

Changing What's Possible


*Goebel JA, The Ten-Minute Examination of the Dizzy Patient, Sem Neurol, 2001, 21: 391-398

9

MUSC Changing What's Possible

11 12

Gaze Nystagmus

- Ask patient to gaze at a target 20-30 degrees from the center for 20 seconds
- Look for gaze-evoked nystagmus or change in direction, form or intensity in a spontaneous nystagmus

Changing What's Possible

14

Goebel JA, The Ten-Minute Examination of the Dizzy Patient, Sem Neurol, 2001, 21: 391-398 Huh YE, Kim JS, Bedside Evaluation of dizzy patients, J Clin Neurol, 2013,9: 203-213

13

Gaze Nystagmus

Central Gaze evoked nystagmus

- Brainstem and Midline cerebellum (FLOCCULONODULAR LOBES=VESTIBULOCEREBELLUM): Eccentric gaze holding centers
 - If gaze holding fails, the eye drifts toward the midline followed by a refixation toward the target
 - Etiologies: Drug effect (sedatives, antiepileptics), alcohol, CNS tumors and cerebellar degenerative syndromes.

Peripheral cause

- Enhancement of peripheral spontaneous nystagmus (linear slow component velocity)
- · No direction change

Changing What's Possible

Goebel JA, The Ten-Minute Examination of the Dizzy Patient, Sem Neurol, 2001, 21: 391-398

Gaze Nystagmus

- Nucleus prepositus hypoglossi and medial vestibular nuclei: neural integrators for horizontal eye movements.
- Interstitial nucleus of Cajal is the neural integrator for torsional and vertical eye movement
- Flocculus/paraflocculus

Changing What's Possible

16

Goebel JA, The Ten-Minute Examination of the Dizzy Patient, Sem Neurol, 2001, 21: 391-398

15

Smooth Pursuit

- Move fingers right and left and up and down without exceeding a velocity of 40 degrees per second and total arc of 60 degrees
- Saccadic eye movement suggests cerebellar or brainstem disease
- Abnormal pursuit is usually non localizing in CNS
- Ipsilateral loss of pursuit is suggestive of ipsilateral parietal lesion
- Patient can see the target and must be attentive to the task

Changing What's Possible

Goebel JA, The Ten-Minute Examination of the Dizzy Patient, Sem Neurol, 2001, 21: 391-398 Huh YE, Kim JS, Bedside Evaluation of dizzy patients, J Clin Neurol, 2013,9: 203-213

Smooth Pursuit

Changing What's Possible

MUSC
MEDICAL UNIVERSITY

Smooth Pursuit

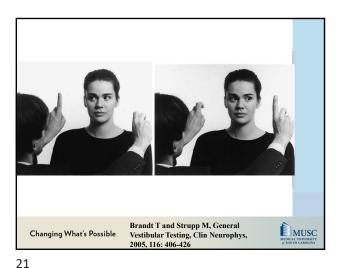
- Visual cancellation of the VOR allows to shift the direction of gaze during head motion
 - Smooth pursuit system allows it.
- Structures responsible of smooth pursuit and eye-head tracking are flocculus/paraflocculus, medial superior temporal area, frontal eye field, dorsal pontine nuclei

Changing What's Possible

Goebel JA, The Ten-Minute Examination of the Dizzy Patient, Sem Neurol, 2001, 21: 391-398 Huh YE, Kim JS, Bedside Evaluation of dizzy patients, J Clin Neurol, 2013,9: 203-213

Saccades

- Ask the patient to look back and forth between two outstretched fingers held 12 inches apart
 - Assess latency of onset, speed, accuracy and conjugate movement
- Frontal lobes: voluntary saccades
- Brainstem reticular formation voluntary and involuntary saccades
- Oculomotor Nuclei III,IV,VI involved in involuntary saccades


Changing What's Possible

20

Goebel JA, The Ten-Minute Examination of the Dizzy Patient, Sem Neurol, 2001, 21: 391-398

19

Saccades

- · Frontal lobes: voluntary saccades
- Brainstem reticular formation voluntary and involuntary saccades
- Oculomotor Nuclei III,IV,VI involved in involuntary saccades

Changing What's Possible

Goebel JA, The Ten-Minute Examination of the Dizzy Patient, Sem Neurol, 2001, 21: 391-398

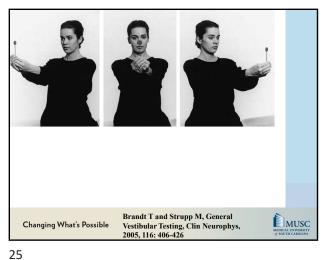
22

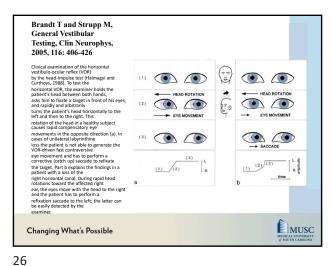
Saccades

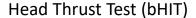
- Delayed saccades
 - Cortical and braintem lesions
- Overshoot saccades
 - Vermis and fastigial nuclei lesions (cerebellum)
- Disconjugate eye movement with slowing of the adducting eye and overshoots of the abducting eye imply MLF:
 - Multiple Sclerosis

Changing What's Possible

Goebel JA, The Ten-Minute Examination of the Dizzy Patient, Sem Neurol, 2001, 21: 391-398


Fixation Suppression Test


- Ask the patient to fixate his own finger held out at arm's length while the chair is rotating at a frequency of 2Hz
 - Look for a decrease in visual-vestibular nystagmus evoked during chair rotation without ocular fixation
- Cerebellar flocculus modulates this nystagmus


Changing What's Possible

Goebel JA, The Ten-Minute Examination of the Dizzy Patient, Sem Neurol, 2001, 21: 391-398

- · Patient fixates a target on the wall while you move the head rapidly to each side
 - Look for refixation saccades
- If there is a deficit in the VOR, the side to which the head is thrust has a weak vestibular input
- Bilateral positive bHIT is seen in ototoxicity

Changing What's Possible

Examination of the Dizzy Patient, Sem Neurol, 2001, 21: 391-398

Goebel JA, The Ten-Minute

27

Head Thrust Test (bHIT)

- · Patient fixates a target on the wall while you move the head rapidly to each side
 - Look for refixation saccades
 - Some people use an opthalmoscope to look for the papillary disk movement
- If there is a deficit in the VOR, the side to which the head is thrust has a weak vestibular input
- · Bilateral positive bHIT is seen in ototoxicity

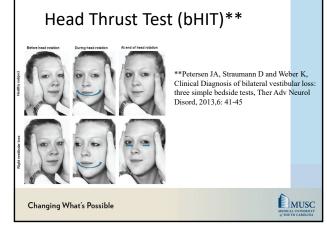
Changing What's Possible

Goebel JA, The Ten-Minute Examination of the Dizzy Patient, Sem Neurol, 2001, 21: 391-398

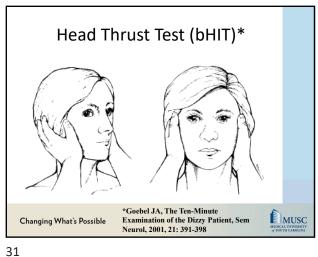
28

30

Head Thrust Test (bHIT)


- If there is a deficit in the VOR, the side to which the head is thrust has a weak vestibular input
- · Bilateral positive bHIT is seen in ototoxicity

Changing What's Possible


29

Goebel JA, The Ten-Minute Examination of the Dizzy Patient, Sem Neurol, 2001, 21: 391-398

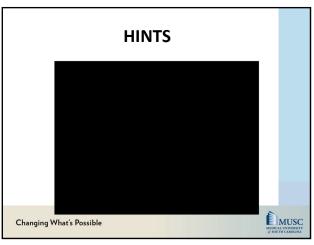
MUSC

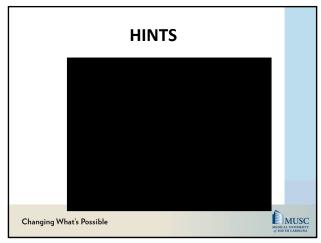
MUSC

Head Thrust Test (bHIT) · Patient should not know to which side you are moving the head to avoid anticipatory correction • If patient has neck problems you can do it from the side to the center Goebel JA, The Ten-Minute Examination of the Dizzy Patient, Sem

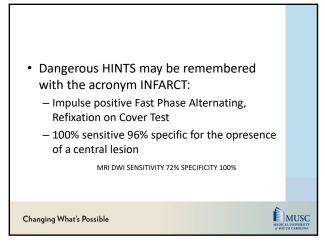
Neurol, 2001, 21: 391-398

Changing What's Possible


32


34

• H.I.N.T.S - More sensitive than an MRI to predict a stroke in an Acute Vestibular Syndrome Newman-Toker DE, Kattah JC, Talkad AV et al, H.I.N.T.S to Diagnose Stroke in the Acute Vestibular Syndrome-Three-Step Bedside Oculomotor Exam More Sensitive than Early MRI DWI, Stroke 2009, 40: 3504-3510 MUSC Changing What's Possible


HINTS • horizontal-HEAD IMPULSE TEST - If negative: more likely central · Gaze-Evoked Nystagmus - Does not follow Alexander's law Skew Deviation - Herald manifestation of basilar occlusion MUSC Changing What's Possible

33

35 36

Postheadshake nystagmus

- Tilt head of the patient 30 degrees forward in horizontal place and shake at 2 Hz for 20 seconds
 - Patient can keep eyes closed until you stop
 - They have to open their eyes and fixate a target
 - Explanation: Ewald's second law and velocity storage in centers.
- Observe for afterheadshake nystagmus and not direction and reversal
- · Can be done in the vertical direction

Changing What's Possible

38

Goebel JA, The Ten-Minute Examination of the Dizzy Patient, Sem Neurol, 2001, 21: 391-398

37

Postheadshake nystagmus

- Observe for afterheadshake nystagmus and not direction and reversal
- · Can be done in the vertical direction

Changing What's Possible

Goebel JA, The Ten-Minute Examination of the Dizzy Patient, Sem Neurol, 2001, 21: 391-398

40

Postheadshake nystagmus

If afterheadshake nystagmus present it means there is an asymmetry in the VOR

Discussion

- Normal HIT with suspect peripheral lesion:

- Specificity was very high in this study 91-98%

 Sensitivity is very dependent of clinician experience and of degree of weakness

Peripheral Cause

• Nystagmus is beating toward the stronger ear

Central origin

- Prolonged duration
 Vertical nystagmus after horizontal headshake (cross-coupling)
- Disconjugate nystagmus

Changing What's Possible

Head Impulse Test

- Lateralizing test

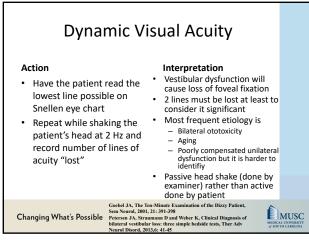
think of a central lesion

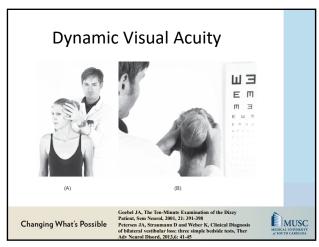
Goebel JA, The Ten-Minute Examination of the Dizzy Patient, Sem Neurol, 2001, 21: 391-398 Huh YE, Kim JS, Bedside Evaluation of dizzy patients, J Clin Neurol, 2013,9: 203-213

39

Discussion

- · Head-Shaking Nystagmus
 - Shortcomings for lateralization
 - Detects ongoing vestibular, uncompensated lesion
 - Correlated to degree of caloric weakness
 - $\boldsymbol{-}$ Sensitivity is affected by experience of clinician


Changing What's Possible



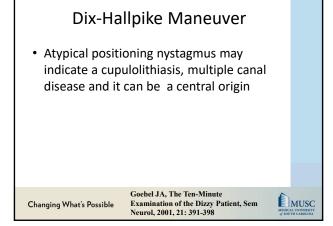
Changing What's Possible

MUSC
MEDICAL CARGUNA

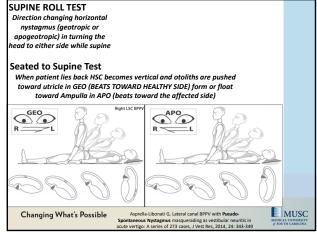
41 42

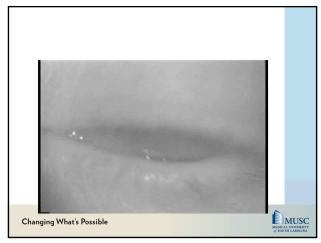
43 44

- Turn the patient's head 45 degrees to one side while seated and bring them rapidly back
- No need for hyperextension
- · Look for nystagmus and note:
 - Latency
 - Direction
 - Fatigability
 - Habituation

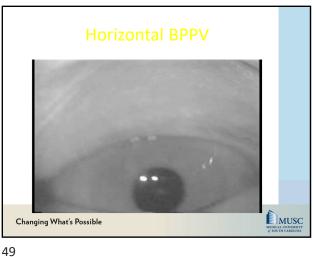

Reversal upon sitting up

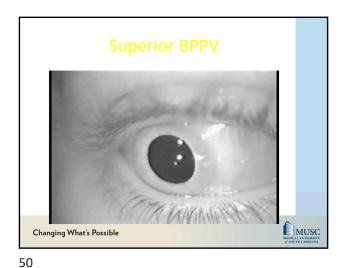
Changing What's Possible

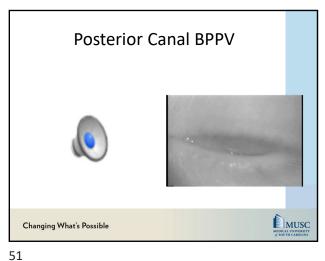

45


Goebel JA, The Ten-Minute Examination of the Dizzy Patient, Sem Neurol, 2001, 21: 391-398

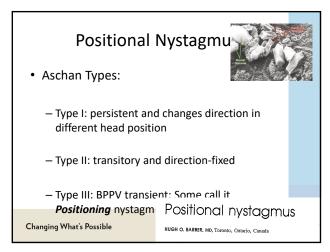
MUSC
MEDICAL UNIVERSITY
of SOUTH CAROLINA

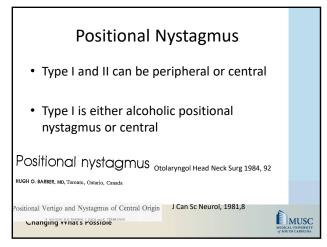


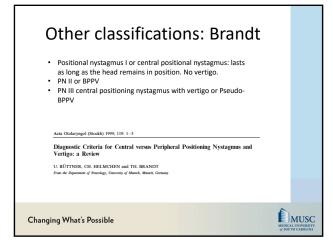

46

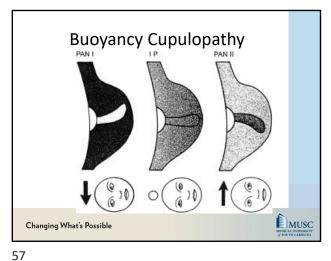


47 48

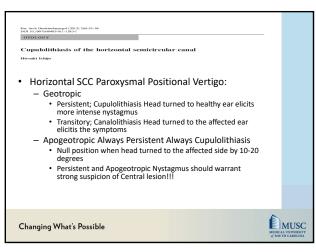



Positional Nystagmus: When to look for important causes? Table 1. Clinical features of peripheral benign paroxysmal positioning vertigo/nystagmus (BPPV) and c paroxysmal positioning vertigo/nystagmus (central PPV) MUSC Changing What's Possible


52

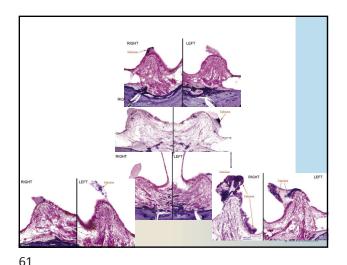

Positional Nystagmus: When to look for important causes? $\label{thm:continuous} Table~1.~Clinical~features~of~peripheral~benign~paroxysmal~positioning~vertigo/nystagmus~(BPPV)~and~central~paroxysmal~positioning~vertigo/nystagmus~(central~PPV)~and~central~proxysmal~positioning~vertigo/nystagmus~(central~PPV)~and~central~proxysmal~positioning~vertigo/nystagmus~(ballow)~and~central~proxysmal~positioning~vertigo/nystagmus~(ballow)~and~central~proxysmal~positioning~vertigo/nystagmus~(ballow)~and~central~proxysmal~positioning~vertigo/nystagmus~(ballow)~and~central~proxysmal~positioning~vertigo/nystagmus~(ballow)~and~central~proxysmal~positioning~vertigo/nystagmus~(ballow)~and~central~proxysmal~positioning~vertigo/nystagmus~(ballow)~and~central~proxysmal~positioning~vertigo/nystagmus~(ballow)~and~central~proxysmal~positioning~vertigo/nystagmus~(ballow)~and~central~proxysmal~proxysmal~positioning~vertigo/nystagmus~(ballow)~and~central~proxysmal~$ Latency following precipitating positioning manoeuvre Duration of attack Direction of nystagmus 5-60 sec (longer in h-BPPV)
During stimulation in the plane of
the affected canal: torsional/vertical
for p-BPPV and a-BPPV; horizontal
for h-BPPV
Typical, rare in h-BPPV
Crescendo-decrescendo typical, not
company in h BPDV Cha

53 54



55 56

Canalolithiasis vs Cupulolithiasis • Schuknecht 1969; Cupulolithiasis theory: - SCC becomes a linear acceleration sensor • Imperfect theory: Brandt 1990 Canalolit Brandt T, Steddin S (1993) Current view of the mechanism of benign paroxysmal positioning vertigo: cupulolithiasis or canalolithiasis? I Vestib Res 3:373–382 MUSC Changing What's Possible



Huh YE, Kim JS, Bedside Evaluation of dizzy patients, J Clin Neurol, 2013,9: 203-213 MUSC Changing What's Possible

59

10

60

Positional tests

- Patient will lie in three positions for 30 seconds
 - Supine
 - Left lateral
 - Right lateral
- Presence of a static positional nystagmus is nonlocalizing
 - A vertical positional nystagmus implies craniocervical lesion or IVth ventricle lesion

Changing What's Possible

Goebel JA, The Ten-Minute Examination of the Dizzy Patient, Sem Neurol, 2001, 21: 391-398 Huh YE, Kim JS, Bedside Evaluation of dizzy patients, J Clin Neurol, 2013,9: 203-213

62

Limb Coordination Tests

- Possible Maneuvers
 - Finger to nose
 - Heel-Shin
 - Rapid alternating motion
- Midline or vestibulocerebellar oculomotor dysfunction in presence of dymetria or dysdiadochokinesia

Changing What's Possible

63

Goebel JA, The Ten-Minute Examination of the Dizzy Patient, Sem Neurol, 2001, 21: 391-398

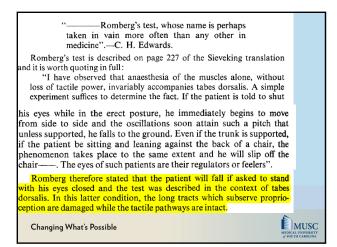
Romberg test

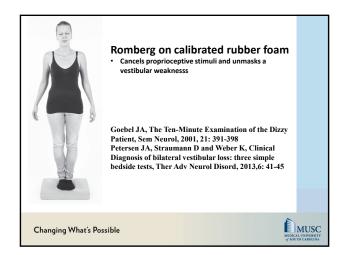
- Look for sway with vision present and vision absent
- IT IS A TEST OF PROPRIOCEPTION It compares stability between eyes open and eyes closed

Changing What's Possible

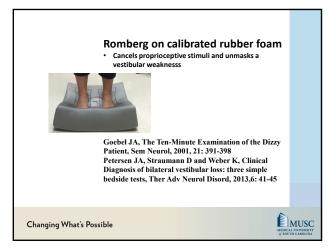
Goebel JA, The Ten-Minute Examination of the Dizzy Patient, Sem Neurol, 2001, 21: 391-398

64


Romberg test


- · Modified Romberg
 - TANDEM STANCE OR COMPLIANT FOAM
 - ALTERS PROPRIOCEPTIVE INPUT SUFFICIENTLY TO MEASURE MORE THE VESTIBULAR INPUT
- PASTPOINTING IS A BETTER TEST

Changing What's Possible

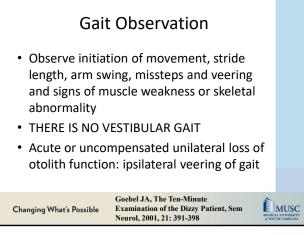

Goebel JA, The Ten-Minute Examination of the Dizzy Patient, Sem Neurol, 2001, 21: 391-398 MUSC

Changing What's Possible

67 68

Clinical diagnosis of bilateral vestibular loss: three simple bedside tests

Jens A. Petersen, Dominik Straumann and Konrad P. Weber


• bHIT

• Dynamic visual Acuity
• Romberg on calibrated foam

Changing What's Possible

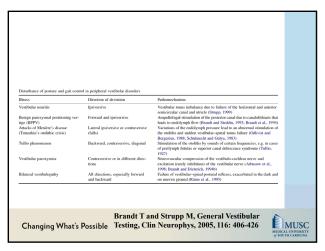
70

69

Gait Observation

• A variety of central brainstem, and musculoskeletal lesions cause lateral deviation

• Problems with gait initiation, turns and arm swing reflects extrapyramidal disease


• Gait ataxia implies cerebellar disease

• Exaggerated hip sway, rhythmic deviations, excessive touching of the wall: functional gait disorder

Changing What's Possible

Goebel JA, The Ten-Minute
Examination of the Dizzy Patient, Sem Neurol, 2001, 21: 391-398

71 72

Disturbance of posture and gait control in central vestibular disorders

| Disturbance | Disturbance of posture and gait control in central vestibular disorders
| Vestibular captage | Contraversive | Focal sciences due to epideptic discharges of the vestibular cortex (Breault and Disturbance) | Contraversive or ipsiversive | Focal sciences due to epideptic discharges of the vestibular cortex (Breault and Disturbance) | Contraversive or ipsiversive | Focal sciences due to epideptic discharges of the vestibular cortex (Breault and Disturbance) | Contraversive or ipsiversive | Focal sciences due to epideptic discharges of the vestibular cortex (Breault and Disturbance) | Contraversive or ipsiversive | Contraversive or ipsiversive | Contraversive or in mescaceptable (seison, ipsiversive due to excitation or excitation of excitation or excitation of excitation or excitation of excitation or excitation or

73

Tragal Compression, Pneumatic otoscopy, Tullio Phenomenon, Valsalva with pinched nostrils and closed glottis

- Observe for tonic eye deviations or nystagmus with symptoms of dizziness
- This helps detect a perilymphatic fistula or a third window syndrome

Goebel JA, The Ten-Minute

Changing What's Possible

Examination of the Dizzy Patient, Sem
Neurol, 2001, 21: 391-398

MUSC
MEDICAL UNIVERSITY
of SOUTH CAROLINA

74

76

75

Phenomenon, Valsalva with pinched nostrils and closed glottis

Tragal Compression, Pneumatic otoscopy, Tullio

- EYE ELEVATION WITH INTORSION WITH LOUD SOUNDS OR VALSALVA IS SUGGESTIVE OF SSCD
- ARNOLD CHIARI MALFORMATION OR OTHER CRANIOCERVICAL ABNORMALITIES CAN HAVE DOWNBEAT NYSTAGMUS WITH ANY INCREASE IN ICP

Goebel JA, The Ten-Minute
Changing What's Possible Examination of the Dizzy Patient, Sem
Neurol. 2001, 21: 391-398

MUSC MEDICAL UNIVERSITY

FUKUDA Step Test

 Ask the patient to march in place with arms and eyes closed for one minute

- Note degree of lateral rotation
- Normal subjects deviate less than 45 degrees
- Some uncompensated unilateral vestibular dysfunction Deviation more than 45 degrees
 Goebel JA, The Ten-Minute Examination

- Inconclusive

Changing What's Possible

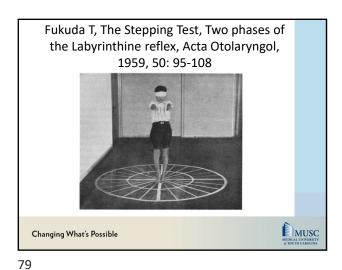
Goebel JA, The Ten-Minute Examination of the Dizzy Patient, Sem Neurol, 2001,

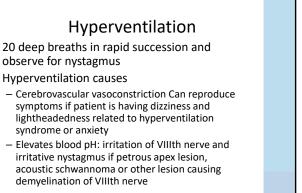
inconclusive 21: 391-398

Fukuda T, The Stepping Test, Two phases of the Labyrinthine reflex, Acta Otolaryngol,

1959, 50: 95-108

MUSC
MEDICAL UNIVERSITY
AC SOUTH CAROLINA


Fukuda T, The Stepping Test, Two phases of the Labyrinthine reflex, Acta Otolaryngol, 1959, 50: 95-108


- Unterberger Tretversuch test 1938
- Hirsch Waltzing test 1940
- These were based on gait modification after caloric stimulation
- Fukuda describes in 1959 two tests relative to two stages of labyrinthine responses:
 Stage of coordination for vertical writing with eyes covered test and Stage of disturbance for the stepping test.

Changing What's Possible

MUSC
MEDICAL UNIVERSITY
OF SOUTH CAROLINA

MUSC

Goebel JA, The Ten-Minute

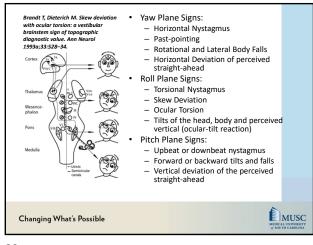
Examination of the Dizzy Patient, Sem Neurol, 2001, 21: 391-398

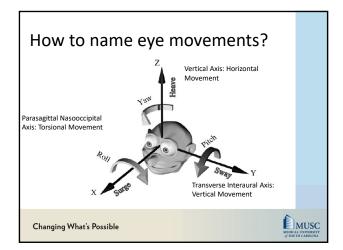
80

Changing What's Possible

Mastoid Oscillation

- Vibration source on mastoid tip and observe for nystagmus noting direction, waveform and effect of fixation
- · Oscillation stimulates both labyrinths
- If there is an asymmetry it can produce horizontal-rotatory nystagmus toward the stronger ear: similar to afterheadshake nystagmus


Changing What's Possible


Goebel JA, The Ten-Minute Examination of the Dizzy Patient, Sem Neurol, 2001, 21: 391-398

Huh YE, Kim JS, Bedside Evaluation of dizzy

81

82