Staff from the Department of Regenerative Medicine.

Recent Publications

Cardiac Signaling Center

Morad Lab Recent Publications

  • Fernández Morales JC, Wei H, Yao YY and Morad M. Regulation of Ca2+ Signaling by Acute Hypoxia and Acidosis in Cardiomyocytes derived from Human Induced Pluripotent Stem Cells. Cell Calcium (Accepted). Dec 2018 
  • Wei H, Zhang XH, Clift C, Yamaguchi N and Morad M.(2018) CRISPR/Cas9 Gene editing of RyR2 in human stem cell-derived cardiomyocytes provides a novel approach in investigating dysfunctional Ca2+ signaling. Cell Calcium, 73, 104–111. DOI:10.1016/j.ceca.2018.04.009
  • Fernandez-Morales, J.C., Morad, M. (2017) Regulation of Ca2+ signaling by acute hypoxia and acidosis in rat neonatl cardiomyocytes. Journal of Molecular and Cellular Cardiology, 114, 58-71. DOI: 10.1016/j.yjmcc.2017.10.004
  • Pahlavan, S., Morad, M. (2017) Total internal reflectance fluorescence imaging of genetically engineered ryanodine receptor-targeted Ca2+ probes in rat ventricular myocytes. Cell Calcium, 66, 98-110. DOI: 10.1016/j.ceca.2017.07.003
  • Morad, M., Zhang, X.H. (2017) Mechanisms of spontaneous pacing: sinoatrial nodal cells, neonatal cardiomyocytes, and human stem cell derived cardiomyocytes. Canadian Journal of Physiology and Pharmacology, 95, 1100-1107. DOI: 10.1139/cjpp-2016-0743
  • Cot, J.J, Cleeman, L., Morad, M. (2017) Xanthohumol modulates calcium signaling in rat ventricular myocytes: possible antiarrhythmic properties. Journal of Pharmacology and Experimental Therapeutics, 360, 239-248. DOI: 10.1124/jpet.116.236588
  • Zhang XH, Morad M.(2016) Calcium signaling in human stem cell-derived cardiomyocytes: Evidence from normal subjects and CPVT afflicted patients. Cell Calcium. 2016 Mar; 59(2-3): 98-107. Epub 2015 Dec 15. Review. DOI:10.1016/j.ceca.2015.12.002
  • Helassa, N., Zhang, X.H., Conte, I., Scaringi, J., Eposito, E., Bradley, J., Carter, T., Ogden, D., Morad, M., Torok, K. (2015) Fast-response calmodulin-based fluorescent indicators reveal rapid intracellular calcium dynamics, Scientific Reports, 5, 15978. DOI: 10.1038/srep15978
  • Zhang, X.H., Wei, H., Šarić, T., Hescheler, J., Cleemann, L., Morad, M. (2015). Regionally divers mitochondrial calcium signaling regulates spontaneous pacing in developing cardiomyocytes. Cell Calcium, Vol. 57. 321-336. doi: 10.1016/j.ceca.2015.02.003
  • Haviland, S., Cleemann, L., Kettlewell, S., Smith, G.L., Morad, M. (2014). Diversity of mitochondrial Ca2+ signaling in rat neonatal cardiomyocytes: Evidence from a genetically directed Ca2+ probe mitycam-E31, Cell Calcium, 56, 133-46. doi: 10.1016/j.ceca.2014.06.001
  • Zhang, X.H., Haviland, S., Wei, H., Šarić, T., Fatima A., Hescheler, J., Cleemann, L., Morad, M. (2013). Ca2+ signaling in human induced pluripotent stem cell-derived cardiomyocytes (iPS-CM) from normal and catecholaminergic polymorphic ventricular tachycardia (CPVT)-afflicted subjects. Cell Calcium 54, 57-70. doi: 10.1016/j.ceca.2013.04.004
  • Rosa AO, Yamaguchi N, Morad M. (2013). Mechanical regulation of native and the recombinant calcium channel. Cell Calcium. 2013; 53(4):264-74. PMCID: PMC3594391. doi: 10.1016/j.ceca.2012.12.007
  • Cot, J.J., Damon, B., Zhang, X.H., Stone, S., Cleemann, L., Yamaguchi, N., Morad, M. (2013). Cardiac calcium signaling pathologies associated with defective calmodulin regulation of type 2 ryanodine receptor. J. Physiol. 59, 4287-4299. doi:10.1113/jphysiol.2013.256123
  • Scaringi, J.A., Rosa, A.O, Morad, M., Cleemann, L. (2013). A new method to detect rapid oxygen changes around cells: How quickly do calcium channels sense oxygen in cardiomyocytes? Journal of Applied Physiology, 115, 1855-1861. doi: 10.1152/japplphysiol.00770.2013
  • N'Gouemo P, Morad M. (2013) Alcohol withdrawal is associated with a down regulation of large-conductance Ca-activated K channels in rat inferior colliculus neurons. Psychopharmacology (Berl). 231,2009-2018. doi: 10.1007/s00213-013-3346-8
  • Tufan H, Zhang XH, Haghshenas N, Sussman MA, Cleemann L & Morad M. (2012). Cardiac progenitor cells engineered with Pim-1 (CPCeP) develop cardiac phenotypic electrophysiological properties as they are co-cultured with neonatal myocytes. J Mol Cell Cardiol 53, 695-706. doi: 10.1016/j.yjmcc.2012.08.008
  • Rosa AO, Movafagh S, Cleemann L & Morad M. (2012). Hypoxic regulation of cardiac Ca2+ channel: possible role of haem oxygenase. J Physiol 590, 4223-4237. doi: 10.1113/jphysiol.2012.236570
  • Kohl P, Bollensdorff C & Morad M. (2012). Progress in biophysics and molecular biology of the beating heart. Prog Biophys Mol Biol 110, 151-153. DOI: 10.1016/j.pbiomolbio.2012.08.007
  • Fatima A, Xu G, Shao K, Papadopoulos S, Lehmann M, Arnaiz-Cot JJ, Rosa AO, Nguemo F, Matzkies M, Dittmann S, Stone SL, Linke M, Zechner U, Beyer V, Hennies HC, Rosenkranz S, Klauke B, Parwani AS, Haverkamp W, Pfitzer G, Farr M, Cleemann L, Morad M, Milting H, Hescheler J & Saric T. (2011). In vitro modeling of ryanodine receptor 2 dysfunction using human induced pluripotent stem cells. Cell Physiol Biochem 28, 579-592. doi: 10.1159/000335753
  • Janowski, E., Pastel, R., and Morad, M (2011). c-Jun is required for TGF-beta-mediated cellular migration via nuclear Ca(2+) signaling. Int J Biochem Cell Biol. 43(8): p. 1104-1113. DOI: 10.1016/j.biocel.2011.03.011
  • Morad, M., L. Cleemann, and D.R. Menick (2011). NCX1 phosphorylation dilemma: a little closer to resolution. Focus on "Full-length cardiac Na+/Ca2+ exchanger 1 protein is not phosphorylated by protein kinase A". Am J Physiol Cell Physiol, 2011. 300(5): p. C970-3. DOI: 10.1152/ajpcell.00064.2011
  • Movafagh, S., L. Cleemann, and M. Morad, Regulation of cardiac Ca(2+) channel by extracellular Na(+) (2011). Cell Calcium, 49(3): p. 162-73. https://doi.org/10.1016/j.ceca.2011.01.008
  • Movafagh S, and Morad M. L-type Ca channel as cardiac oxygen sensor. Ann. N.Y. Acad. Sci. 188:153-158, 2010. doi: 10.1111/j.1749-6632.2009.05095.x
  • Dietrich, C.J. and M. Morad. Synaptic acidification enhances GABAA signaling. J Neurosci, 2010. 30(47): p. 16044-52. doi: 10.1523/JNEUROSCI.6364-09.2010
  • Rosa AO, Hansen ST, Paamand RT, Cleemann L, & Morad M. (2010) Differential effects of hypoxia on K+ channels in ventricular cardiomyocytes from rat (Rattus norvegicus) and shark (Squalus acanthias). M.D.I.B.L. Bulletin 49:64-67. THE BULLETIN (PDF) 
  • Cleemann L, Haviland S, Dalsgaard R, & Morad M (2010) Cholinergic and adrenergic responses of beating strips from the systemic heart of the Atlantic hagfish (Myxine glutinosa). M.D.I.B.L. Bulletin 49:13-16. THE BULLETIN (PDF) 

Yamaguchi Lab Recent Publications

  • Xu L, Chirasani VR, Carter JS, Pasek DA, Dokholyan NV, Yamaguchi N, Meissner G.(2018)  Ca2+-mediated activation of the skeletal-muscle ryanodinereceptor ion channel.  J Biol Chem. pii: jbc.RA118.004453. doi: 10.1074/jbc.RA118.004453.

  • Petrotchenko, E. V.*, Yamaguchi, N.*, Pasek, D. A., Borchers, C. H., and Meissner, G. (2011) Mass spectrometric analysis and mutagenesis predict involvement of multiple cysteines in redox regulation of RyR1. (* Equal contribution)
    Research and Report in Biology 2, 13-21

  • Yamaguchi, N.*, Prosser, B. L.*, Ghassemi, F.*, Xu, L., Pasek, D. A., Eu, J. P., Hernández-Ochoa, E. O., Cannon,
    B., Wilder, P. T., Lovering, R. M., Weber, D., Melzer, W., Schneider, M. F., and Meissner, G. (2011) Modulation of sarcoplasmic reticulum Ca2+
    release in skeletal muscle expressing ryanodine receptor impaired in regulation by calmodulin and S100A1. (* Equal contribution)
    American Journal of Physiology-Cell Physiology 300, C998-C1012

  • Yamaguchi, N., Chakraborty, A., Pasek, D. A., Molkentin, J. D., and Meissner G. (2011) Dysfunctional ryanodine receptor and cardiac hypertrophy: role of signaling molecules.
    American Journal of Physiology-Heart and Circulatory Physiology 300, H2187-H2195

  • Rosa, A. O., Yamaguchi, N., and Morad, M. (2013) Mechanical regulation of native and the recombinant calcium channel.
    Cell Calcium 53, 264-274

  • Yamaguchi, N.*, Chakraborty, A.*, Huang, T.*, Xu, L., Gomez, A. C., Pasek, D. A., and Meissner, G. (2013) Cardiac hypertrophy associated with impaired regulation of cardiac ryanodine receptor by calmodulin and S100A1. (* Equal contribution)
    American Journal of Physiology- Heart and Circulatory Physiology 305, H86-H94

  • Arnáiz-Cot, J. J., Damon, B. J., Zhang, X. H., Cleemann, L., Yamaguchi, N., Meissner, G., and Morad, M. (2013) Cardiac calcium signaling pathologies associated with defective calmodulin regulation of type 2 ryanodine receptor.
    The Journal of Physiology 591, 4287-4299

  • Gomez, A. C. and Yamaguchi, N. (2014) Two regions of the ryanodine receptor calcium channel are involved in Ca2+-dependent inactivation.
    Biochemistry 53, 1373-1379

  • Chakraborty, A., Pasek, D. A., Huang, T., Gomez, A. C., Yamaguchi, N., Anderson, M. E., and Meissner, G. (2014) Inhibition of CaMKII does not attenuate cardiac hypertrophy in mice with dysfunctional ryanodine receptor.
    PLoS One 9, e104338

  • Gomez, A. C., Holford, T. W., and Yamaguchi, N. (2016) Malignant hyperthermia-associated mutations in S2-S3 cytoplasmic loop of ryanodine receptor calcium channel impair calcium-dependent inactivation.
    American Journal of Physiology-Cell Physiology 311, C749-C757

  • Xu, L., Gomez, A. C., Pasek, D. A., Meissner, G., and Yamaguchi, N. (2017) Two EF-hand motifs in ryanodine receptor calcium release channels contribute to isoform-specific regulation by calmodulin.
    Cell Calcium 66, 62-70

  • Wei, H., Zhang, X. H., Clift, C., Yamaguchi, N.*, and Morad, M.* (2018) CRISPR/Cas9 gene editing of RyR2 in human stem cell-derived cardiomyocytes provides a novel approach in investigating dysfunctional Ca2+ signaling. (* Co-corresponding author)
    Cell Calcium 73, 104-111